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Abstract

The NASA Planetary Data System hosts millions of images
acquired from the planet Mars. To help users quickly find im-
ages of interest, we have developed and deployed content-
based classification and search capabilities for Mars orbital
and surface images. The deployed systems are publicly ac-
cessible using the PDS Image Atlas. We describe the process
of training, evaluating, calibrating, and deploying updates to
two CNN classifiers for images collected by Mars missions.
We also report on three years of deployment including usage
statistics, lessons learned, and plans for the future.

Introduction
The NASA Planetary Data System (PDS) maintains archives
of data collected by NASA missions that explore our so-
lar system. The PDS Cartography and Imaging Sciences
Node (Imaging Node) provides access to millions of images
of planets, moons, comets, and other bodies. Given the large
and continually growing volume of data, there is a need for
tools that enable users to quickly search for images of inter-
est. Each image product is described by a rich set of search-
able metadata properties such as the time it was collected,
the instrument used, the image target, local season, etc.

However, users often wish to search on the content of the
image to zero in on those images most relevant to a scien-
tific investigation or individual curiosity. Manually search-
ing through millions of images is infeasible. In previous
work, we trained image classifiers to detect classes of in-
terest in Mars orbital and surface images (Wagstaff et al.
2018). Using the predictions made by these classifiers, users
can interactively search for classes of interest using the PDS
Image Atlas1. Since the deployment of these classifiers in
late 2016 and through August 2020, their predictions have
been used to satisfy 62,613 searches on the Atlas website.

In this paper, we report on several new advances within
this domain. First, we expanded the set of classes known to
each classifier to broaden their coverage of different con-
tent types. Second, we employed classifier calibration to
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1https://pds-imaging.jpl.nasa.gov/search/

produce more reliable posterior probabilities, which is vi-
tal since only classifications with a posterior probability of
at least 0.9 are displayed to users. Finally, we now report on
three years of deployment including usage statistics, lessons
learned, and plans for the future.

Related Work
Machine learning image classification has achieved high
levels of performance since the adoption of convolu-
tional neural networks (CNNs) trained on millions of im-
ages (Krizhevsky, Sutskever, and Hinton 2012). In addi-
tion to demonstrated improvements in accuracy, the use of
a CNN removes the need for manual feature engineering.
The ability to adapt or “fine-tune” large networks enables
the re-use of learned lower levels of the network on new im-
age collections while customizing the output nodes to the
classes of interest. Palafox et al. (2017) showed that a CNN
out-performed a support vector machine classifier on finding
Mars landforms of interest. In previous work, we demon-
strated the ability to fine-tune the AlexNet classifier for ap-
plication to images collected by instruments in Mars orbit
and on the Mars surface (Wagstaff et al. 2018). Other ap-
proaches with relevance for planetary exploration are terrain
classification of regions within an image to inform naviga-
tion (Rothrock et al. 2016) and generating text captions for
planetary images and enable a larger search vocabulary (Qiu
et al. 2020), as opposed to a fixed set of image classes.

New Mars Classifier Data Sets
We created two new labeled data sets to train and eval-
uate the latest versions of our Mars image classifiers.
The HiRISE images were collected by the High Resolu-
tion Imaging Experiment (HiRISE) instrument onboard the
Mars Reconnaissance Orbiter (MRO) (McEwen et al. 2007),
while the MSL images were collected by the Mast Cam-
era (Mastcam) and Mars Hand Lens Imager (MAHLI) in-
struments mounted on Mars Science Laboratory (MSL) Cu-
riosity rover (Grotzinger et al. 2012). To ensure high quality,
the labels for both data sets were acquired using crowdsourc-
ing with local volunteers who received specific training for
each data set.
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Class Name Count Percent
Bright dune 250 2.31%
Crater 794 7.34%
Dark dune 166 1.53%
Impact ejecta 74 0.68%
Other 8,802 81.39%
Slope streak 267 2.47%
Spider 164 1.52%
Swiss cheese 298 2.76%
Total 10,815 100%

Table 1: HiRISE (Mars orbital) data set class distribution.

HiRISE Orbital Data Set (v3)
In previous work (Wagstaff et al. 2018), we compiled 3,820
images of Mars surface features that covered five classes of
interest. The new HiRISE data set (v3) increases the num-
ber of labeled images to 10,815 (before augmentation), with
eight classes (Doran et al. 2020)2.

HiRISE images consist of long strips that cover up to 60
km with a 6-km wide swath at a resolution of 30 centime-
ters/pixel. To identify surface features of interest, we em-
ployed a focus of attention mechanism known as dynamic
landmarking (Wagstaff et al. 2012). This process scans
through a large image to identify visually salient regions,
which are termed landmarks. The salience of each pixel is
defined as a linear combination of the response to a Canny
filter and the Earth mover’s distance (Rubner, Tomasi, and
Guibas 1998) between the distribution of pixel intensity val-
ues within a window around the pixel compared to values
within a larger enclosing window. We employed a genetic al-
gorithm to optimize the parameters (analysis window sizes,
weighting of individual filters, and salience threshold) based
on fourteen HiRISE images with hand-labeled salient re-
gions. The salient landmarks within an image were obtained
by identifying connected components of regions that ex-
ceed the salience threshold. We cropped the salient land-
marks from the “browse” (reduced resolution) version of
each HiRISE image using a square bounding box plus a 30-
pixel border, then resized each image to 227 × 227 pixels.

The resulting HiRISE image data set contains 10,815
landmark images derived from 232 separate HiRISE source
images. The class distribution is shown in Table 1 in alpha-
betical order. The classes are highly imbalanced, with the
majority of images classified as “Other” and “Impact ejecta”
the least common class.

Examples of each class are shown in Figure 1. “Bright
dune”, “Crater”, “Dark dune”, “Other”, and “Slope streak”
classes were included in the v1 HiRISE data set. “Bright
dune” and “Dark dune” are two sand dune classes found on
Mars. Dark dunes are completely defrosted, whereas bright
dunes are not. The “Crater” class consists of crater images
in which the diameter of the crater is greater than or equal
to 1/5 the width of the image and the circular rim is visi-
ble for at least half the crater’s circumference. The “Slope
streak” class consists of images of dark flow-like features on

2https://doi.org/10.5281/zenodo.4002935

(a) Bright dune (b) Crater (c) Dark dune (d) Impact ejecta

(e) Other (f) Slope streak (g) Spider (h) Swiss cheese

Figure 1: Examples of each class in the HiRISE v3 data set.

slopes. These features are believed to be formed by a dry
process in which overlying (bright) dust slides down a slope
and reveals a darker sub-surface. “Other” is a catch-all class
that contains images that fit none of the defined classes of
interest (e.g., Figure 1(e)).

We introduce three new classes of interest, which are “Im-
pact ejecta”, “Spider”, and “Swiss cheese”. “Impact ejecta”
refers to evidence of a meteorite impact on the surface. “Spi-
ders” and “Swiss cheese” are phenomena that occur in the
south polar region of Mars. Spiders have a central pit with
radial troughs, and they are believed to form as a result of
seasonal jets expelling carbon dioxide gas through an over-
lying ice layer (Aye et al. 2019). “Swiss cheese” is terrain
that consists of pits that are formed when the sun heats the
ice making it sublimate (change solid to gas).

We used a combination of labeling platforms to label
the HiRISE landmark images. Early images were labeled
by in-house volunteers using the Zooniverse.org platform.
We conducted a second labeling campaign that targeted
three minority classes: Impact ejecta, Spiders, and Swiss
cheese. Landmark images from this campaign were labeled
using the Interactive Data Analyzer and Reviewer (IDAR)
browser-based image labeling tool3. We obtained labels for
each image from three volunteers. Images for which the
three labels did not agree (for the second campaign, this
amounted to approximately 30% of the images) were man-
ually reviewed to select the final label. To guide labeling
when more than one class was present in the image, we
instructed volunteers to prioritize classes as Impact ejecta,
Slope streak, Spider, Dark dune, Bright dune, Swiss cheese,
Crater, or Other.

MSL Surface Data Set (v2)
We created a new data set of Mars surface images collected
by the Mastcam and MAHLI instruments on the MSL Cu-
riosity rover. Mastcam is a two-instrument suite with left-
and right-eye cameras. MAHLI is a single focusable camera
located on the turret at the end of the rover’s robotic arm.
In our previous work (Wagstaff et al. 2018), we created a

3https://github.com/stevenlujpl/IDAR
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(a) Arm cover (b) Artifact (c) Close-up rock (d) Dist. landscape

(e) Drill hole (f) DRT (g) DRT spot (h) Float rock

(i) Layered rock (j) L.-toned veins (k) M. cal. target (l) Nearby surface

(m) Night sky (n) O. rover part (o) Sand (p) Sun

(q) Wheel (r) Wheel joint (s) Wheel tracks

Figure 2: Examples of each class in the MSL surface data
set. Subfigure (d) contains the circular shape of the sun,
while subfigure (e) is an irregularly shaped moon of Mars.

data set of 6,691 images spanning 24 classes that primar-
ily focused on rover hardware parts. The new data set (v2)
includes 2,900 images spanning 19 classes that primarily fo-
cus on objects of scientific interest (Lu and Wagstaff 2020)4.

The MSL data set consists of RGB and grayscale images
that are 8-bit, decompressed, radiometrically calibrated,
color corrected, and geometrically linearized browse im-
ages from the MSL mission archive hosted by the PDS
Imaging Node. We resized the smallest side to 227 pixels
while preserving aspect ratio and center-cropped the other
side to 227 pixels. We randomly sampled a total of 2,900
images from sol (MSL mission day) 1 to 2,224 composed
of 1,172 Mastcam left eye camera, 1,000 Mastcam right eye
camera, and 728 MAHLI images.

Our first task was to define the set of MSL classes of inter-
est, which was not known in advance. We analyzed a subset
of 1,600 images covering the full sol range with the browser-

4https://doi.org/10.5281/zenodo.4033453

Class Name Count Percent
Arm cover 10 0.34%
Artifact 408 14.07%
Close-up rock 373 12.86%
Distant landscape 197 6.79%
Drill hole 65 2.24%
DRT 14 0.48%
DRT spot 47 1.62%
Float rock 80 2.76%
Layered rock 105 3.62%
Light-toned veins 42 1.45%
Mastcam calibration target 100 3.45%
Nearby surface 1,008 34.76%
Night sky 23 0.79%
Other rover part 86 2.97%
Sand 123 4.24%
Sun 115 3.97%
Wheel 56 1.93%
Wheel joint 33 1.14%
Wheel tracks 15 0.52%
Total 2,900 100%

Table 2: MSL (Mars surface) data set class distribution.

based Class Discovery Tool from the IDAR software suite.
This tool allows users to interactively associate images with
dynamically created categories as they are discovered. We
started with an initial list of classes from a domain expert
on the MSL science team and pre-sorted the images using
the DEMUD algorithm (Wagstaff et al. 2013) so that the
most “interesting” or unusual images were displayed first.
The DEMUD algorithm is efficient in terms of class dis-
covery (Wagstaff and Lu 2020). The class discovery process
yielded 19 classes of interest.

Examples of each class are shown in Figure 2 in alpha-
betical order. They include three classes that describe rover-
created features (“Drill hole”,“DRT (Dust Removal Tool)
spot”, and “Wheel tracks”), “Sun” and “Night sky”, seven
Mars surface feature classes (e.g., “Light-toned veins”,
“Layered rock”, “Float rock”), five rover part classes
(e.g., “DRT”, “Mastcam calibration target”, “Wheel” and a
generic “Other rover part” class), and “Artifact” used for im-
ages that are low in quality or contain missing data. The
pixel resolutions and lighting conditions in these images
vary a lot as they were imaged at different distances and dif-
ferent times.

We used the IDAR labeling tool to label MSL surface data
set images. We divided the 2,900 images into 29 batches,
and each batch of 100 images were distributed to three vol-
unteers for labeling. We provided detailed labeling instruc-
tions with definitions of each class and prioritization guid-
ance when multiple classes appeared in a single image. As
with the HiRISE data set, we resolved disagreement using
expert review. The MSL surface data set class distribution is
shown in Table 2.
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Train sol 1 - 948 Val. sol 949 - 1920 Test sol 1921 - 2224 Full Archive sol 1 - 2224
Instrument Count Percent Count Percent Count Percent Count Percent
Mastcam Left 842 42.1% 108 36.0% 222 37.0% 50,480 40.0%
Mastcam Right 678 33.9% 107 35.7% 215 35.8% 43,041 34.1%
MAHLI 480 24.0% 85 28.3% 163 27.2% 32,612 25.9%
Total 2,000 100% 300 100% 600 100% 126,133 100%

Table 3: MSL surface data set training, validation, and test data sets by instrument and sol range.

CNN Classification for Mars Images

We trained and deployed two Convolutional Neural Network
(CNN) classifiers, denoted as HiRISENet and MSLNet, for
MRO HiRISE images and MSL Mastcam and MAHLI im-
ages. We employed transfer learning to adapt the weights
of networks pre-trained on Earth images for use with Mars
orbital and surface images.

HiRISENet: CNN Classifier for Mars Orbital
Images

We adapted the AlexNet image classifier (Krizhevsky,
Sutskever, and Hinton 2012) for use with HiRISE classes.
AlexNet was trained on 1.2 million Earth images from 1000
classes in the ImageNet data set. We started with Caffe’s
BVLC reference model (Jia et al. 2014), which is a copy of
AlexNet that was trained for 310,000 iterations, provided by
Jeff Donahue5. We removed the final fully connected layer,
added a new layer with eight output classes, and re-trained
the network with Caffe (Jia et al. 2014). We followed Caffe’s
recommendations for fine-tuning, including using a small
base learning rate and small step size and a larger learning
rate multiplier for the final layer only. We used a learning
rate of 0.0001, weight decay of 0.0005, and relatively small
step size of 20,000. The initial layers were almost fixed; they
used learning rate multipliers of 1 (weight) and 2 (bias). The
final layer was allowed greater adaptation with multipliers of
10 (weight) and 20 (bias). We trained the model for 78,900
iterations. Caffe computes the per-band mean pixel values
from the training set and uses these values to normalize all
images during training and prediction.

We split the HiRISE dataset into train, validation, and test
sets using each landmark’s HiRISE source image identifier
to ensure no overlap in source images between the sets. We
used approximately 65% of the data for training, 19% for
validation, and 17% for testing. Images obtained from our
second labeling campaign (to target minority classes) appear
in the training and validation sets only so that we could as-
sess improvements against an unchanged test set.

We applied data augmentation to the training and valida-
tion sets. The augmentation includes three rotations: 90, 180,
and 270 degrees, horizontal and vertical flips, and a random
brightness adjustment. In addition, we up-sampled data ob-
tained in the second labeling campaign by a factor of two.

5https://github.com/BVLC/caffe/tree/master/models/bvlc reference
caffenet

MSLNet: CNN Classifier for Mars Surface Images
MSLNet is a hybrid of two CNN classifiers. The version
1 (v1) classifier focused on rover hardware classes (Wagstaff
et al. 2018; Lu et al. 2019). The primary objectives of the
Mastcam and MAHLI instruments are to enable science
analysis of rover investigation sites, which motivated the
creation of version 2 (v2) classifier to expand the set of
classes to include science targets (e.g. “Float rock”, “Lay-
ered rock”) and activities (e.g. “DRT spot”, “Drill hole”).
The v1 classifier initially focused on engineering considera-
tions and rover hardware classes due to requests by the MSL
rover planning team as well as pre-existing availability of
labels for those items. The “Wheel” class was of particular
interest due to growing awareness in 2017 that the rover’s
wheels were experiencing a higher than expected level of
degradation due to driving on the rough surface. The suc-
cess of the v1 classifier led to new requests to also accom-
modate science-related classes in support of MSL mission
to explore and understand Mars. Observations that contain
classes such as “Layered rock” and “Light-toned veins” are
very high science priorities to help determine the history and
evolution of water activity, which can also have implications
for habitability. The deployed MSLNet classifier covers both
areas of interest (engineering and science) to meet the needs
of diverse users with different priorities.

MSLNet first classifies images with the v2 classifier, then
reclassifies any images classified as “Other rover part” with
the v1 classifier to get a fine-grained classification of rover
parts. The creation and evaluation of the v1 classifier were
reported in previous work (Wagstaff et al. 2018). The v2
classifier was trained and evaluated using the MSL surface
data set described above. We divided this data set into train-
ing, validation, and test data sets according to their sol of
acquisition to enable the evaluation of generalization perfor-
mance on newly acquired images. The sol splitting bound-
aries, as shown in Table 3, were chosen to enable per-camera
distributions that roughly match the full archive.

To improve the generalization performance of the classi-
fier, we augmented the images in the training data set (but
not the validation and test data sets). The MAHLI images
(which come from a rotatable platform) were augmented us-
ing rotation (90◦, 180◦, and 270◦) and flipping (horizontal
and vertical); the Mastcam images (which come from a fixed
platform) were augmented using only horizontal and vertical
flipping methods.

As with HiRISENet, for the MSLNet v2 classifier we fine-
tuned AlexNet for 2,050 iterations with a fixed base learn-
ing rate of 0.0001. We set the learning rate multipliers of
the first four convolution layers, the fifth convolution layers,
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and the final fully connected layers to 0, 1, 20 respectively.
We set the dropout rate to 0.5 for the first and second fully
connected layers. The final hybrid MSLNet classifier com-
bines v1 and v2 and classifies images into 35 classes of both
science and engineering relevance.

Classifier Calibration
The deployed classifiers use a confidence threshold to deter-
mine which results are shown to users, so it is vital that the
models are well calibrated. Modern neural networks have
achieved higher accuracies but in many cases have suffered
an increase in calibration error, which means that the pre-
dicted class probabilities deviate from the true empirical
probabilities. In many cases, the networks are consistently
over-confident in their predictions. This effect appears to
be tied to an increase in model capacity and lack of reg-
ularization (Guo et al. 2017). For a quantitative measure of
model calibration, we calculate the Expected Calibration Er-
ror (ECE), which is the expected difference between pos-
terior probability (confidence) and accuracy. We partition
n predictions into M equally spaced bins and computed a
population-weighted average of the difference between ac-
curacy and confidence within each bin:

ECE =
∑M

m=1
|Bm|
n |acc(Bm)− conf(Bm)|.

We evaluated four post-hoc calibration methods that ex-
tend Platt Scaling (Platt et al. 1999) to multiclass problems.
Temperature scaling (Guo et al. 2017) uses a single param-
eter T to rescale model output. Given the model output for
item x, which is a logit vector z ∈ RK , the calibrated prob-
ability of class k is: p(y = k|x) = ezk/T∑K

j=1 ezj/T
. The pa-

rameter T is optimized with respect to the log likelihood on
the validation set. Since the parameter T does not change
the maximum of the softmax function, the accuracy of
the model is unchanged. Bias-corrected temperature scaling
(BCTS) (Alexandari, Kundaje, and Shrikumar 2020) adds a
bias term bk for each class: p(y = k|x) = ezk/T+bk∑K

j=1 ezj/T+bj
.

Vector and matrix scaling (Guo et al. 2017) add additional
flexibility with per-class scaling using a K×K linear trans-
formation matrix W by computing Wz + b and then nor-
malizing across classes to get p(y = k|x). Vector scaling
constrains W to be a diagonal matrix whose entries func-
tion as class-specific temperature values.

CNN Classification Evaluation
To evaluate HiRISENet and MSLNet, we used the overall
(post-threshold) accuracy score and abstention rate as the
primary performance metrics and ECE to measure the cali-
bration level of the classifiers. We also analyzed the preci-
sion and recall scores to understand per-class performance.

HiRISENet Evaluation
HiRISENet classification accuracy results are shown in Ta-
ble 4. Random class prediction on this data set achieves
11.1% accuracy (given eight classes). Compared to a simple
baseline that predicts the most common class from the train-
ing set (“Other”), HiRISENet exhibits a strong improvement
from 81.1% to to 92.8% on the test set.

Train Val Test
(n = 6997) (n = 2025) (n = 1793)

Classifier (naug = 51058) (naug = 14959)

Most common 78.4% 75.0% 81.1%
HiRISENet 99.6% 88.6% 92.8%

Table 4: Classification accuracy on HiRISE (Mars orbital)
images. The best performance on each data set is in bold.

0.9 confidence
ECE Acc Acc Abst Rate

Uncalibrated 0.073 88.6 94.2 13%
Temperature scaling 0.013 88.6 97.3 31%
BCTS 0.014 89.2 97.3 29%
Vector scaling 0.010 89.3 97.2 27%
Matrix scaling 0.013 90.3 97.7 24%

Table 5: HiRISENet calibration results on validation set;
best performance in bold.

Figure 3: Calibrated HiRISENet reliability (test set).

For this application, reliable posterior probabilities are es-
sential, since predictions are thresholded so that only those
of at least 0.9 probability are shown to users. We compared
four calibration methods in terms of their impact on accu-
racy, ECE, and abstention (Table 5). We found that matrix
scaling achieved the highest validation accuracy (90.3%)
as well as the lowest abstention rate (24%). Vector scal-
ing achieved the lowest ECE but with higher abstention and
lower accuracy. Therefore, we adopted matrix scaling for de-
ployment. On the test set, the calibrated HiRISENet model
achieved 96.7% accuracy with an abstention rate of 20%.

Reliability diagrams (DeGroot and Fienberg 1983;
Niculescu-Mizil and Caruana 2005) provide a visual repre-
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Figure 4: Calibrated HiRISENet per-class precision and re-
call (test set).

sentation of model calibration. The empirical per-bin accu-
racy is plotted as a function of model posterior probability.
For a perfectly calibrated model, these values are equal, fol-
lowing the diagonal line. Figure 3 shows the reliability dia-
gram for HiRISENet. The bottom panel shows the data set
distribution in terms of predicted probability. We find that
HiRISENet is well calibrated with an ECE of just 0.022 and
the majority of predictions in the most-confident bin.

Figure 4 shows per-class precision and recall on the test
set after matrix scaling calibration. Most classes achieve pre-
cision above 0.70 with recall above 0.50 (even after thresh-
olding). The “Spider” class has the lowest recall (0.02, out of
only 42 items), while the “Impact ejecta” class has the low-
est precision (0.18). Figure 5 shows the confusion matrix on
the test set after matrix scaling calibration. Diagonal (cor-
rect) entries have a dark background. A comparison to the
confusion matrix before calibration (not shown) indicates
that two images that were previously incorrectly classified
into the “Spider” class are now correctly classified as the
“Impact ejecta” class; however, the confusion between the
“Crater” and “Impact ejecta” classes has increased. In ad-
dition, the “Spider” class suffered from significant domain
shift, which is evident in Figure 6. The “Spider” images in
the validation set as shown in Figure 6(a) are extremely vi-
sually different compared to the “Spider” images in the test
set as shown in Figure 6(b). We found that even human la-
belers had trouble recognizing them as the same phenomena.
Future updates to this data set will target the “Spider” class.

MSLNet Evaluation
The performance of the MSLNet v2 classifier is shown in
Table 6 in comparison to the most-common-class (“Nearby
surface”) baseline. The MSLNet classifier significantly out-
performs the baseline method, achieving 74.5% accuracy, or
87.2% with 36% abstention using a confidence threshold of
0.9, on the test set. Recall that images in the training, valida-
tion, and test sets were divided according to their sol (date)
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Figure 5: Calibrated HiRISENet confusion matrix (test set).

(a) Validation set (b) Test set

Figure 6: Domain shift in HiRISE “Spider” landmarks.

of acquisition. The performance of the classifier gradually
decreases over time as the rover traversed to new locations,
possibly due to label shift, in which the prior class probabil-
ities change over space or time (Lipton, Wang, and Smola
2018). We plan to investigate label shift adaptation to enable
the classifier to accommodate such change.

MSLNet achieves lower accuracy and higher abstention
than HiRISENet on its corresponding test set. Given the
larger number of classes and smaller number of labeled im-
ages, we believe that this classifier is likely even more data-
limited and would benefit from additional data collection.

Reliable posterior probabilities are likewise essential for
MSLNet. We calibrated the MSLNet classifier using tem-
perature scaling, the most computationally efficient method
among the four calibration methods discussed in this paper
(e.g., matrix scaling scales quadratically with the number
of classes, which is problematic for MSLNet). After cali-
bration, test set accuracy using the confidence threshold im-
proved to 90.3%, at the cost of increased abstention. For this
application, we are willing to sacrifice coverage to ensure
that the classifications provided to users are highly reliable.
MSLNet’s ECE improved from 0.142 to 0.08 with temper-
ature scaling. The reliability diagram of MSLNet after cali-
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Train (n=5920) Validation (n=300) Test (n=600)
Acc Acc (0.9) Abst Rate Acc Acc (0.9) Abst Rate Acc Acc (0.9) Abst Rate

Most Common 26.3% - - 24.7% - - 31.2% - -
MSLNet 99.6% 100% 6.5% 78.3% 89.8% 38.0% 74.5% 87.2% 36.2%
MSLNet-calibrated 99.6% 100% 18.8% 78.3% 96.5% 52.7% 74.5% 90.3% 51.8%

Table 6: Performance results for MSLNet classifiers (best for each data set is in bold). Note that Acc (0.9) in the title means
accuracy score computed with a 0.9 confidence threshold.

Figure 7: Calibrated MSLNet reliability diagram (test set).

bration is shown in Figure 7.
Per-class precision and recall scores are shown in Fig-

ure 8. The green and red F1-score curves separate the classes
into three groups. The first group, those above the green
curve, includes ten classes (e.g. “Nearby surface”, “Mast-
cam calibration target”) whose F1 scores are greater than
0.6; the second (intermediate) group includes five classes
(e.g. “Layered rock”, “Drill hole”) whose F1 scores are be-
tween 0.2 and 0.6; and the third group, those below the
red curve, includes four classes (e.g. “Float rock”, “Wheel
tracks”) whose F1 scores are less than 0.2. We note that the
classes in the third group were evaluated on very few im-
ages, so their performances are not statistically robust. These
classes require further improvement, and we plan to inves-
tigate up-sampling or additional data acquisition to increase
the number of images of these classes.

PDS Image Atlas Deployment
HiRISENet and MSLNet generate classifications that enable
PDS users to quickly find images of interest via content-
based search. The public interface to the PDS image archives
is the PDS Image Atlas6. Users can select an instrument

6https://pds-imaging.jpl.nasa.gov/search/
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Figure 8: Calibrated MSLNet per-class precision and recall
(test set).

Figure 9: View from the Atlas of craters found in HiRISE
image PSP 002912 2075 RED.
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Figure 10: Number of monthly queries for HiRISENet and MSLNet classifications over 3.5 years (colors distinguish years).

(e.g., HiRISE) and filter the images to only contain a par-
ticular class of interest. To enable this kind of search, we
applied HiRISENet and MSLNet to the full archive of im-
ages collected by the relevant instruments on Mars. These
archives total 65,091 HiRISE and 1,057,912 MSL images,
far more than the labeled subsets used for training and eval-
uation. Figure 9 shows the Atlas user view of a HiRISE
image with all confidently classified craters enclosed in red
bounding boxes. Craters that are small, faint, degraded, or
distorted are less likely to pass the confidence threshold, but
those identified as craters are highly reliable. In response to
user requests, we added the ability to download a file that
contains the latitude and longitude coordinates of each de-
tected landmark, using PDSC7 to convert from pixel to geo-
graphic coordinates.

Classifying all HiRISE images took about five days on
a GPU system and yielded 29,608 landmarks with a poste-
rior probability of at least 0.9, from classes that were not
“Other”. We also filtered out predictions for “Spider” or
“Swiss cheese” at latitudes outside of the south polar re-
gion (Aye et al. 2019). This total represents an 81% in-
crease over the number of classified landmarks available in
the first classifier release (Wagstaff et al. 2018). MSLNet
classified 136,967 images with a posterior probability of at
least 0.9. Both classifiers are integrated into the data inges-
tion pipeline for the Atlas. As new data is delivered from
HiRISE or MSL, the images are automatically processed and
tagged with their predicted classes.

We track the number of Atlas queries that make use
of HiRISENet and MSLNet classifications. As shown in
Figure 10(a), HiRISENet exhibits regular and increasing
usage over time. The most popular HiRISE class to be
queried is “Crater”. MSLNet shows more varied activity
(Figure 10(b)), dominated by heavy usage in early 2019
when the number of queries for “Wheel” increased by sev-

7https://github.com/JPLMLIA/pdsc

eral orders of magnitude (note the difference in y axis
range). Given the small separation in query timestamps,
most likely it was the result of a large number of scripted
queries to the Atlas, which provides a public API. It is pos-
sible that this classifier output is serving to help train other
investigators’ models.

We also analyzed the top 20 domain names from which
the queries came. From January to July of 2020, we found
that 40% of these queries came from hosts through an ISP,
including Spectrum and Comcast as well as ISPs in the U.K.,
the Netherlands, Romania, and Taiwan. Another 33% of
these queries came from JPL domains, which is not surpris-
ing given the relevance of the content to JPL projects. A mi-
nority of the top 20 domain queries came from the Remote
Sensing Technology Center of Japan (2%), the University of
Wyoming (1%), and SoftBank (Japan) (1%), while 23% of
hostnames did not resolve to a domain.

Finally, we used Google Analytics to examine the global
distribution of visitors who made classification queries. Be-
tween July 2017 (the oldest data available) and August 2020,
there were 62,613 visitors. The top ten countries and share
of visitors were: United States (51%), India (6%), United
Kingdom (4%), Germany (3%), Canada (2%), France (2%),
Italy (2%), Spain (2%), Australia (2%), and Russia (2%). In
all, visitors came from 180 different countries.

Lessons learned. The deployment of Mars image classi-
fiers at scale has yielded several lessons learned. First, it is
worth highlighting the challenge of defining meaningful and
relevant classes up front. Unlike a fixed benchmark data set,
new Mars images are continually collected and new classes
could arise at any time. Collaboration with domain experts
is vital for ensuring the relevance of the class definitions.

Second, domain shift is an important factor in both data
sets. Figure 11 compares the class distribution (excluding
“Other”) for the labeled HiRISE data set (brown) to the
predictions made across the full HiRISE archive (orange).
While the “Crater” class is dominant in both, its share of the
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Figure 11: Class distribution for HiRISE labeled data set ver-
sus predictions on the full archive.

images classified nearly doubles when deployed. There are
likely two factors involved: our labeled data set is not fully
representative of all of Mars, and “Crater” predictions may
in general be more confident and thus more likely to pass
the 0.9 threshold and be retained here. Similar effects are
seen in the MSL data set. We are currently investigating the
use of label shift adaptation increase the robustness of both
classifiers.

Finally, we found that our initial simplifying assumption
of one class per image is sometimes inadequate (a crater
might contain a dark slope streak; an MSL image might
contain rover parts and the horizon). Even with guidance on
class priorities, human labelers sometimes found it difficult
to select a single class label. We plan to adopt a multi-label
approach in future versions to allow more flexibility and re-
duce label noise.

Conclusions and Future Work
This paper presents the latest updates to the deployment of
machine learning image classifiers in support of planetary
science. Two classifiers, for orbital and surface images of
Mars, have been operating since late 2016 to enable the first
content-based search of large NASA image archives. Us-
age has increased over time, and feedback from users as
well as internal assessments have guided recent improve-
ments. These include acquiring additional training data to
improve minority class performance for the HiRISE classi-
fier, defining new classes of scientific interest for the MSL
classifier, employing calibration to increase classifier relia-
bility, and making landmark coordinates downloadable. To
increase our understanding of how and why users employ
the machine learning classifications of Mars images, we are
investigating minimally intrusive ways to learn more about
user motivations and use cases. Meanwhile, the performance
and scope of these classifiers continues to grow. Each time
new images are delivered by the instruments at Mars, they
are automatically classified and added to the archive.

We are currently developing a new classifier, MERNet,
that will operate on images collected by the two Panoramic
Camera (Pancam) instruments on the Opportunity and Spirit
Mars Exploration Rovers (MER) rovers. Based on our
lessons learned, we are employing a multi-label approach
so multiple labels can be assigned to a single image. MER-
Net will classify all Pancam images using classes of both
science and engineering interest that were identified in a sur-
vey conducted by the MER Data Catalog project (Cole et al.
2020). MERNet will provide users with the first content-
based search capability for MER images.

Finally, we plan to incorporate label shift adapta-
tion (Alexandari, Kundaje, and Shrikumar 2020) into future
upgrades of the Mars image classifiers. It is evident that the
data collected by Mars instruments is not i.i.d.; class fre-
quencies change as spacecraft study different locations on
Mars, globally from orbit or locally via rover traverse. By
enabling the classifiers to adapt to class probability changes,
we expect to obtain more reliable classifications.
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