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ABSTRACT

Current Mars surface exploration is primarily pre-
scripted on a day-by-day basis. Mars rovers have a lim-
ited ability to autonomously select targets for follow-up
study that match pre-defined target signatures. How-
ever, when exploring new environments, we are also
interested in observations that differ from what previ-
ously has been seen. In this work, we develop and eval-
uate methods for a Mars rover to use novelty to guide
the selection of observation targets with the goal of ac-
celerating discovery. In a study comparing three image
content representations and five novelty-based ranking
methods, we found that the Isolation Forest identified
the largest number of novel targets using a combina-
tion of intensity and shape features to represent the can-
didate targets. It was followed closely by the Local
RX algorithm using raw pixel features. All algorithms
achieved performance well above alternatives such as
random selection or selecting the best match to cur-
rent science objectives, which do not account for nov-
elty.

1 INTRODUCTION
The Mars Science Laboratory rover (Curiosity) has
been exploring the surface of Mars since August 2012.
The primary goal of the mission is to determine
whether Mars may have been habitable in the past
(or present) [6]. The Mars 2020 rover (Perseverance)
launched in July 2020 and will arrive at Mars in Febru-
ary 2021. The Perseverance mission will additionally
search for signs of past microbial life itself and cache
promising samples for a future mission to recover and
return to the Earth for further study [13].

Mars rover surface operations are planned by a team
of scientists and engineers on the Earth. After review-
ing the rover’s latest position, status, and the data that
it collected, the team develops a plan for the rover’s
next day that specifies the time and duration of each ac-
tivity: drives, data collection, communication passes,
etc. The plan is carefully simulated and tested to con-
firm that it fits within the available resources (time, en-
ergy, viewing opportunities) before it is uplinked to the
rover.

At the end of each drive, the Mars Science Labora-
tory (MSL) rover collects images of its new location
to transmit to Earth as an aid to planning the next day’s
investigation. In 2016, the rover gained the ability to
autonomously select where to point the ChemCam in-
strument to acquire compositional spectra for targets
that match specified science priorities. ChemCam em-
ploys a laser-induced breakdown spectrometer to fire
a laser and then record the resulting plasma spectrum
which reveals the presence of individual elements [12].
ChemCam can reach targets up to seven meters from
the rover without requiring a physical approach and in-
strument contact.

The software onboard the rover that enables decisions
for autonomous targeting is AEGIS (Autonomous Ex-
ploration for Gathering Increased Science) [5]. It
was originally developed for the Mars Exploration
Rovers to detect interesting targets in navigation cam-
eras for follow-up observations with the higher resolu-
tion, multi-band panoramic camera [3]. For MSL, tar-
get detection and ranking is likewise done using navi-
gation camera images, and the top-ranking target’s lo-
cation is used to command the collection of spectra by
ChemCam. The science team specifies a target “sig-
nature” that expresses the current science priorities in
terms of target size, shape, smoothness, albedo (aver-
age pixel intensity), etc. AEGIS has autonomously se-
lected over 250 targets for MSL since 2016 and has led
to increased use of ChemCam by the science team over-
all [5].

In this paper, we propose and evaluate a new approach
to autonomous targeting that can allow Mars rovers to
select targets in terms of novelty. This capability can
complement the AEGIS system by identifying addi-
tional targets that may not match current science ob-
jectives but which present the possibility of a new dis-
covery. We compared multiple algorithms for novelty-
based ranking on a collection of Mars rover images and
assesses how well their selections agreed with an in-
dependent manual identification of novel targets. We
found that the Isolation Forest was most successful at
discovering novel targets when using features that cap-
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Figure 1: Novelty-based target ranking identifies targets, extracts features to represent each target, uses novelty detection to rank the
targets in comparison to previously observed targets, and outputs the top choice. Evaluation is conducted by comparing selections
to manually identified novel targets (gold polygons). Example image was collected by MSL on sol 1683.

ture both intensity and shape attributes. The Local RX
algorithm achieved almost the same level of perfor-
mance using the raw pixel features. All five algorithms
performed well above random selection as well as the
use of AEGIS alone, which was not designed to priori-
tize novel targets.

2 NOVELTY-BASED TARGETING FOR MARS
ROVERS

We propose a new capability for the onboard, au-
tonomous selection of follow-up targets by Mars
rovers. In addition to the ability to select targets that
match pre-defined signatures, we add the option to se-
lect targets based on their novelty with respect to what
the rover has already encountered.

Fig. 1 illustrates the steps in this procedure applied to
a navigational camera (Navcam) image taken by the
MSL rover on sol (mission day) 1683. Candidate tar-
gets are detected using the Rockster [2] image analysis
system, which is part of AEGIS. Rockster segments the
image into individual targets using edge detection and
grouping. It was designed to run efficiently enough, in
terms of runtime and memory consumption, for opera-
tion onboard Mars rovers. The Mars Science Labora-
tory rover has a processor that runs at 133 MHz, with
only 16 megabytes of memory available for AEGIS.
The result of Rockster is a collection of polygons that
describe the outline of each target.

Each target is represented using a standard set of fea-
tures, as described in section 2.1. Next, a novelty de-
tection method is used to rank the targets in the current
image in terms of their novelty with respect to the col-
lection of targets previously observed on the mission
(section 2.2). Finally, the system outputs the top se-
lection, which can be used to inform further follow-up

data collection by ChemCam or other instruments on
the rover.

2.1 Target Representation

We investigated three methods for representing the tar-
get image content to provide input for the novelty rank-
ing algorithms. Each representation converts data from
the two-dimensional grayscale image that contains the
target into a one-dimensional feature vector. Targets
vary in size and aspect ratio. The most basic “inten-
sity_pixels” representation uses the pixel intensity val-
ues directly as features. To provide a consistent dimen-
sionality despite different target sizes, we first crop a
square bounding box around each target polygon and
resize the cropped image to 64×64 pixels. The cropped
image containing the target is converted into a feature
vector with 4096 values.

Second, the “intensity_stats” representation computes
seven statistical features to summarize the contents of
the pixels within the target image. These statistics
include the minimum, maximum, mean, and median
pixel values as well as their standard deviation, skew,
and kurtosis. Since these aggregate statistics abstract
away from the original pixels, we do not need to resize
the target images to a standard size, so they operate di-
rectly on the cropped (bounding box) image. The result
is a 7-dimensional feature vector for each target.

Finally, the “intensity+shape” representation uses nine
domain-specific features computed by the AEGIS sys-
tem for its target ranking procedure. This representa-
tion makes use of the polygon itself as well as the pixel
values. Pixel features include the mean and standard
deviation of pixels within the polygon (not the entire
bounding box). The geometry of the target is captured
by the area, perimeter, and “ruggedness” of the polygon
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as well as features derived from fitting an ellipse to the
polygon and recording its eccentricity, orientation, and
semi-major and semi-minor axis lengths [4].

2.2 Novelty Ranking Algorithms

We implemented several methods for assigning a nov-
elty score to each target, including ranking the tar-
gets by reconstruction error when using a lower-
dimensional model computed with Principal Compo-
nent Analysis (PCA) or DEMUD [11], by sparsity in
feature space (Isolation Forest [8]), and by deviation
from either the global “background” (RX) [10, 1] or a
local window (LRX).

One approach to novelty detection is to compare new
observations to a compact model of content from prior
observations. Any new content that is not recognized
by the model provides a potential indication of nov-
elty. We quantify this kind of novelty as the reconstruc-
tion error between the new observation and its recon-
struction using the model. For example, we use Prin-
cipal Component Analysis (PCA) to compute k eigen-
vectors of a n × d training data set, project each item
into the corresponding k-dimensional space, and then
reconstruct the original observation in d-dimensional
space. The PCA-based novelty score for a feature vec-
tor x is:

sPCA(x) = ||x− (UUT (x− µ) + µ)||2 (1)

where U contains the eigenvectors and µ is the mean
feature vector. Since the projection onto U discards in-
formation, some details may be lost in the reconstruc-
tion, and these increase the reconstruction error score.
The DEMUD algorithm [11] uses the same scoring
method, but it updates U to include each new selection
once it is made, to reduce the chance of a redundant se-
lection. We used a k value of 10 for “intensity_pixels”,
7 for “intensity_stats”, and 3 for “intensity+shape” fea-
tures.

In contrast, the Isolation Forest [8] identifies items that
are easily separated from the majority of the data set.
An Isolation Forest consists of multiple binary trees, in
which each tree employs a series of randomly chosen
splits to partition the feature space. Each split speci-
fies a randomly chosen feature and random threshold
value. The position of each item in feature space dic-
tates its outlier (novelty) score, which is proportional to
the number of splits required to “isolate” the item into
its own cell in feature space. Outliers will tend to have a
lower score, while inliners will have a higher score. The
final isolation forest score for an item x is its average
score across all trees in the forest. We used the default
value of 100 trees for the Isolation Forest.

The Reed-Xiaoli (RX) detector [10] is an unsupervised
anomaly detection method that has been used success-
fully in remote sensing and exploration applications
(e.g., [1, 7, 14]). RX computes an anomaly score for
each item x using the Mahalanobis distance between
the item and a background distribution:

sRX(x) = (x− µ)T Σ−1(x− µ) (2)

where Σ is the covariance matrix of the “background”.
We used a separate training set as the background for
RX.

Since we are working with image data, we can also use
a variant of RX called Local RX (LRX), which gener-
ates a score for each pixel, then averages those scores
to generate a score for the full image. LRX computes
µ and Σ using a pair of sliding windows (inner and
outer) to define the local “background” around each
pixel as the pixels that fall between the inner and outer
windows. LRX has been widely used to detect small
anomalies in hyperspectral images [9]. In our experi-
ments, we used an inner window size of 3 × 3 pixels
and the outer window size was 5× 5 pixels.

3 EXPERIMENTAL RESULTS
3.1 Data Set

When AEGIS is used for MSL, it operates on a pre-
planned Navigation camera (Navcam) grayscale image
that is collected by the rover. The Rockster [2] algo-
rithm identifies candidate targets within the Navcam
image. The Navcam image ID, Rockster-identified tar-
gets, and target prioritization signatures (which express
the current science priorities and are used to rank can-
didate targets) are included as part of the information
sent from the rover to the planning team. AEGIS was
first deployed on sol 1343 (May 16, 2016), and our
data consists of the Navcam images and AEGIS targets
identified from sol 1343 to 2578 (November 6, 2019).
We assembled a data set of 6, 005 targets that had an
area of at least 100 pixels. We accessed the image data
directly from the Navcam Experiment Data Records
(EDRs) from the Planetary Data System (PDS) Imag-
ing Node (https://pds-imaging.jpl.nasa.gov/
data/msl/MSLNAV_0XXX/). The EDRs are stored as
16-bit images, which we converted to 8-bit images
by multiplying all pixels by a factor of 255/4095,
which is the same conversion done onboard MSL for
AEGIS.

To create a reference dataset of “novel” targets for eval-
uating algorithm ranking performance, co-author R.
Francis identified which of the Rockster targets might
have been considered novel or interesting by the MSL
science team and had not been observed in Navcam im-
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ages on prior sols. For example, Fig. 1 shows two tar-
gets identified as novel on sol 1683 because they depict
plate-like exposures of eroded layers. Other kinds of
novel target features include unusual dark-toned mate-
rial, light-toned veins, and rough surface textures. In
all we obtained a list of 108 reference novel targets ob-
served from sols 1343 to 1703.

For the image shown in Fig. 1, Rockster identified a
total of 11 targets, two of which are novel (gold poly-
gons). The DEMUD and PCA algorithms selected
target 0 (novel), and the LRX algorithm selected 166
(novel). The Isolation Forest selected target 130, and
RX selected target 5, neither of which were considered
novel. The target selected by AEGIS (158) was also not
considered novel, which is unsurprising since AEGIS
has a different objective.

3.2 Methodology
We performed a series of experiments to evaluate the
ability of each algorithm to identify novel targets.
Within our novel target reference data set, we identi-
fied 28 sols that had at least one novel reference tar-
get. For each of these sols, we ranked all candidate
targets identified by Rockster in the Navcam image us-
ing the novelty ranking algorithms described in Sec-
tion 2.2. We defined a “prior” (training) data set of
targets for each algorithm that consisted of all targets
observed (novel or not) on sols prior to the experi-
ment sol, e.g., sols 1343 to S-1 where S is the exper-
iment sol. This simulates the operational scenario on-
board the rover in which the novelty ranking algorithm
would rank new targets based only on data from pre-
vious sols as it traverses the Mars surface. We eval-
uated each algorithm with the three target represen-
tations (“intensity_pixels”, “intensity_stats”, and “in-
tensity+shape”) described in Section 2.1. Each rank-
ing algorithm provides a novelty score for each target,
with targets ranked in order from most novel to least
novel.

Some algorithms restrict which feature representations
they can employ. Since LRX operates on local win-
dows surrounding each pixel in the target image, it
cannot be used with the “intensity_stats” or “inten-
sity+shape” features. RX requires that the number of
items n be greater than the number of features d, be-
cause it computes a feature covariance matrix (Equa-
tion 2) that is singular if n < d. Since each target
has dimension 64 × 64, the number of features for the
“intensity_pixels” representation is 4096. For all sols
in our experiments, the number of prior images is less
than 4096, so we did not evaluate RX with the “inten-
sity_pixels” representation.

When AEGIS is used onboard the MSL rover, typi-
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Figure 2: Summary of novelty detection performance using
each representation. Dotted lines show Random and AEGIS
algorithm performance.

cally only one or two targets are chosen by AEGIS for
follow-up observation with ChemCam due to rover re-
source constraints. To quantify the performance of the
novelty ranking algorithms in a similar operational sce-
nario, we recorded how many novel reference targets
were found in the top two ranked targets for each al-
gorithm (“top-2 score”). Although AEGIS was not de-
signed as a novelty detection algorithm, we also com-
puted its performance on the same task for comparison.
As a baseline, we implemented a random ranking al-
gorithm that employs a pseudo-random number gener-
ator to randomly rank the targets in each experiment.
We ran the random algorithm with 10 different random
seeds and reported the average performance.

3.3 Results

The top-2 score for each novelty ranking algorithm,
summed across all scenarios, is shown in Fig. 2. In-
dividual results for each sol are given in the Appendix.
The AEGIS and random algorithms do not employ dif-
ferent feature representations, so they each have a sin-
gle total top-2 score of 23 (AEGIS) and 14.5 (random,
10 trials), respectively. The maximum possible score is
54.

The best top-2 score (34) was achieved by the Isolation
Forest using the “intensity+shape” features (Fig. 2).
LRX, DEMUD, and PCA achieved their best scores
with the raw pixel intensities (33, 32, and 32 respec-
tively). The best RX result (32) was achieved with
the “intensity+shape” features. Overall, the best score
achieved by each algorithm was well above that of ran-
dom selection. All novelty algorithms, using their indi-
vidual best feature representations, also out-performed
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Figure 4: Targets found uniquely by one algorithm (see text)

the AEGIS algorithm. AEGIS was not designed for se-
lecting novel targets; its utility in this comparison is
to provide insight into how the current onboard sys-
tem would perform on the task of novelty detection. As
we hypothesized, using an algorithm designed to rank
items by their novelty achieves the best result.

4 DISCUSSION
4.1 Feature representations
Compared to algorithms that assign a score to each tar-
get based on its novelty with respect to targets in the
prior data set, LRX scores each pixel in the target image
based on its novelty with respect to the local pixels sur-
rounding it. This makes LRX effective for identifying
small features within candidate target images that devi-
ate from their surrounding patterns, such as light-toned
veins. These veins are rare within the full target set,
but they are often selected by humans for inclusion in
the novel reference target data set. For example, novel
target 145 from sol 1475 in Fig. 4(a), which contains a
small bright vein, was found only by the LRX method
and no other algorithm when using “intensity_pixels”
features.

The Isolation Forest had the lowest performance us-
ing raw pixel intensities but the highest score with the

“intensity+shape” features. The Isolation Forest “iso-
lates” candidate targets by recursively selecting one of
the features at random and then partitioning targets by
randomly selecting a split value between the maximum
and minimum values of the selected feature. This pro-
cess is represented as a tree structure, and the number
of splits (branches) required to isolate a candidate tar-
get (averaged over many random trees) is the Isolation
Forest’s measure of novelty—i.e., fewer splits implies a
higher degree of novelty. Isolating targets in this man-
ner using a large number of features as in the case of
raw pixel intensities is likely less effective than when
fewer, more descriptive features such as the “inten-
sity+shape” features are used. Examples of two targets
found only by the Isolation Forest method when using
the latter features are shown in Fig. 4(b) and Fig. 4(c);
both targets contain multiple veins.

4.2 Algorithm agreement

In addition to reporting the agreement between algo-
rithm selections and novel reference target selections, it
is also useful to assess agreement between algorithms
themselves. For example, two algorithms that have
high performance but make different selections could
be used in complement onboard to promote a diversity
of novel target selections. Figs. 3(a)-3(c) show agree-
ment between algorithms for the experiments in Section
3.3. In each matrix, the entries represent the number of
common targets in the selections made by each pair of
algorithms out of 56 total selections. We omitted the
diagonal entries because these represent the agreement
of each algorithm with itself. DEMUD and PCA us-
ing “intensity_pixels” features (Fig. 3(a)), stand out for
agreeing on nearly all selections (55 out of 56). Both al-
gorithms rank the images based on reconstruction error
using k = 10 eigenvectors to model variation within
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Figure 5: Top 2 selections by novelty ranking algorithms on
sol 1685 (“intensity+shape” features)

the data set. The reduction from 4096 to 10 features
yields similar results with the two methods.

For “intensity_stats” (Fig. 3(b)) and “intensity+shape”
(Fig. 3(c)) features, we see generally lower agreement
(more diversity). RX and iForest are the algorithms
with the highest agreement in these settings, so it seems
likely that distance from “prior” targets (RX) is corre-
lated with separability (Isolation Forest) in these repre-
sentations. Using “intensity_pixel” features, PCA, DE-
MUD, and LRX achieved similarly high top-2 scores
(Fig. 2), but LRX had lower agreement with PCA (31)
and DEMUD (32), indicating that its selections com-
plement theirs. LRX selected 9 targets not chosen
by PCA or DEMUD, of which three contained veins,
two had rough surface texture, and four showed layer-
ing. PCA and DEMUD selected 6 targets not chosen
by LRX, of which only one contained a vein. Like-
wise, using “intensity+shape” features, PCA, iForest,
and RX had similarly high top-2 scores, but PCA made
the same selections as iForest and RX in only 31 to 35
cases.

4.3 Novel reference targets

We observed that some targets were selected by mul-
tiple novelty ranking algorithms that were not in the
novel reference target list. We investigated these
choices carefully and found that they revealed criteria
that science team members factor into target prioriti-
zation in addition to scientific interest or novelty. For
example, Fig. 5 shows the top 2 selections made by
AEGIS and the novelty ranking algorithms using the
“intensity+shape” features. The novel reference tar-
gets for this experiment were 17 and 42, chosen be-
cause they contain plate-like exposures of eroded lay-
ers. While most of the ranking algorithms selected

Figure 6: Top 2 selections by novelty ranking algorithms on
sol 1400 (“intensity_stats” features)

these targets, some also selected target 3. While tar-
get 3 contains the same plate-like exposures as targets
17 and 42, target 3 is farther away from the rover and
is partially covered by sand. While target 3 is a valid
choice from a novelty perspective, this target is not as
desirable as 17 and 42 because the follow-up Chem-
Cam measurement of target 3 would likely hit the sand
rather than the rock itself, and a measurement of the
rock composition is generally more desirable to the sci-
ence team.

Fig. 6 shows another experiment from sol 1400 using
“intensity_stats” features. In this experiment, target
231 was the novel reference target, desirable because it
is bedrock that is notably light-toned. DEMUD, PCA,
and AEGIS did select target 231, but the algorithms
also prioritized other targets (51, 156, 227, and 127).
These other targets, originally identified as candidate
targets by the Rockster algorithm, appear to merge mul-
tiple rocks into a single target and as a result might have
uncommon feature values that cause them to be priori-
tized by the novelty ranking algorithms.

5 CONCLUSIONS AND FUTURE WORK
We propose a new capability for onboard data analysis
for Mars rovers in which they can assess the novelty of
each candidate target and use this information to inform
autonomous decisions about which targets merit addi-
tional follow-up study. Novelty-based targeting would
not replace the method currently used by AEGIS on-
board MSL to identify targets that best match current
science objectives. Instead, mission scientists and plan-
ners could selectively employ novelty-based targeting
to complement the AEGIS selections (e.g., one science-
based and one novelty-based target per drive). In addi-
tion, in cases where resources allow for only a single
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Table 1: Number of novel reference targets found in each al-
gorithm’s top two selections, with “intensity_pixels” features

sol DEMUD iForest LRX PCA
1347 1 1 1 1
1371 1 1 0 1
1400 0 0 0 0
1439 2 1 1 2
1469 0 0 0 0
1475 1 0 2 1
1519 0 0 0 0
1521 2 1 2 2
1583 0 0 0 0
1605 2 1 2 2
1612 0 1 1 0
1629 2 2 2 2
1631 1 1 1 1
1636 2 2 1 2
1645 2 2 2 2
1660 2 2 2 2
1666 1 1 1 1
1672 2 2 2 2
1673 2 0 0 2
1676 0 0 1 0
1683 1 0 2 1
1684 1 0 1 1
1685 2 2 2 2
1686 2 1 2 2
1690 1 1 2 1
1697 0 1 1 0
1699 1 2 1 1
1703 1 2 1 1
Total (of 54) 32 27 33 32

follow-up target to be chosen, planners could specify
a threshold on the novelty score, rather than a simple
ranking, to determine when the rover has encountered
a target of sufficient novelty to supersede the target that
best matches current science priorities.

An important consideration for any use of novelty-
based ranking onboard a Mars rover is the resources
(memory and computation) that it requires. Our next
step will be to assess each algorithm in terms of runtime
and memory consumption to determine how it would
operate given only 16 MB of RAM and a RAD750 pro-
cessor (133 MHz). In addition, we will evaluate these
methods to rank targets identified in color images such
as those collected by the Mastcam instrument on MSL.
Previous work has shown that spectral information is
leveraged in different ways by these algorithms [7], and
the best algorithm choice may be different when color
information is available.

Appendix A: Per-sol Experiment Results

Performance for each novelty ranking algorithm for
each sol scenario we evaluated is given in Tab. 1 (“in-
tensity_pixels”), Tab. 2 (“intensity_stats”), and Tab. 3
(“intensity+shape”). The bottom row of each table

Table 2: Number of novel reference targets found in each
algorithm’s top two selections, with “intensity_stats” features

sol DEMUD iForest PCA RX
1347 1 1 1 1
1371 1 1 1 0
1400 0 1 1 0
1439 1 2 1 1
1469 1 0 0 0
1475 1 1 2 1
1519 0 0 0 0
1521 2 1 2 1
1583 1 1 1 1
1605 2 2 2 2
1612 1 1 0 0
1629 2 2 2 2
1631 2 2 2 2
1636 2 1 1 1
1645 0 0 0 0
1660 2 1 2 1
1666 0 0 0 0
1672 2 2 2 2
1673 0 0 0 0
1676 0 0 0 0
1683 1 0 0 1
1684 1 0 1 0
1685 1 1 1 1
1686 1 1 2 2
1690 0 0 0 0
1697 1 1 0 0
1699 2 1 1 1
1703 1 0 0 1
Total (of 54) 29 23 25 21

gives the total score across all sols. The AEGIS and
random algorithms do not employ different feature rep-
resentations, so they each have a single total top-2 score
of 23 (AEGIS) and 14.5 (random, 10 trials), respec-
tively. The maximum possible score is 54.

Acknowledgments
We thank the NASA Center Innovation Fund for sup-
porting this work. Part of this research was carried out
at the Jet Propulsion Laboratory, California Institute of
Technology, under a contract with the National Aero-
nautics and Space Administration. Copyright 2020. All
rights reserved.

References
[1] Burl, M. C. and Lucchetti, D. (2000). Autonomous vi-

sual discovery. In Data Mining and Knowledge Discovery:
Theory, Tools, and Technology II, pages 240–248.

[2] Burl, M. C., Thompson, D. R., deGranville, C., and Born-
stein, B. J. (2016). Rockster: Onboard rock segmentation
through edge regrouping. Journal of Aerospace Informa-
tion Systems, 13:329–342.

[3] Estlin, T., Bornstein, B., Gaines, D., Anderson, R.,
Thompson, D., Burl, M., Castaño, R., and Judd, M.
(2012). AEGIS automated science targeting for the MER

5056.pdfi-SAIRAS2020-Papers (2020)



Table 3: Number of novel reference targets found in each al-
gorithm’s top two selections, with “intensity+shape” features

sol DEMUD iForest PCA RX
1347 1 1 1 0
1371 0 0 0 0
1400 0 0 0 0
1439 1 1 2 0
1469 1 1 1 1
1475 0 2 1 1
1519 0 0 0 0
1521 2 2 1 2
1583 1 1 1 1
1605 1 1 1 1
1612 1 1 1 1
1629 1 2 2 2
1631 1 1 1 2
1636 1 1 2 2
1645 2 2 2 2
1660 1 1 1 1
1666 2 2 2 2
1672 2 2 2 2
1673 0 2 0 1
1676 0 1 1 1
1683 1 2 2 2
1684 1 1 0 1
1685 1 2 1 2
1686 2 2 2 2
1690 1 1 1 1
1697 0 0 0 0
1699 2 1 2 1
1703 0 1 1 1
Total (of 54) 26 34 31 32

Opportunity rover. ACM Transactions on Intelligent Sys-
tems and Technology, 3(3):Article 50.

[4] Estlin, T., Gaines, D., Bornstein, B., Schaffer, S., Tomp-
kins, V., Thompson, D. R., Altinok, A., Anderson, R. C.,
Burl, M., no, R. C., Blaney, D., Flores, L. D., Nelson,
T., and Wiens, R. (2014). Automated targeting for the
MSL rover ChemCam spectrometer. In Proceedings of the
12th International Symposium on Artificial Intelligence,
Robotics, and Automation in Space (i-SAIRAS).

[5] Francis, R., Estlin, T., Doran, G., Johnstone, S., Gaines,
D., Verma, V., Burl, M., Frydenvang, J., Montaño, S.,
Wiens, R. C., Schaffer, S., Gasnault, O., DeFlores, L.,
Blaney, D., and Bornstein, B. (2017). AEGIS autonomous
targeting for ChemCam on Mars Science Laboratory: De-
ployment and results of initial science team use. Science
Robotics, 2(7).

[6] Grotzinger, J. P., Crisp, J., Vasavada, A. R., Anderson,
R. C., Baker, C. J., Barry, R., Blake, D. F., Conrad, P.,
Edgett, K. S., Ferdowski, B., Gellert, R., Gilbert, J. B.,
Golombek, M., Gómez-Elvira, J., Hassler, D. M., Jandura,
L., Litvak, M., Mahaffy, P., Maki, J., Meyer, M., Ma-
lin, M. C., Mitrofanov, I., Simmonds, J. J., Vaniman, D.,
Welch, R. V., and Wiens, R. C. (2012). Mars Science Lab-
oratory mission and science investigation. Space Science
Review, 170:5–56.

[7] Kerner, H. R., Wagstaff, K. L., Bue, B. D., Wellington,
D. F., Jacob, S., Horton, P., III, J. F. B., Kwan, C., and
Amor, H. B. (2020). Comparison of novelty detection
methods for multispectral images in rover-based planetary
exploration missions. Data Mining and Knowledge Dis-
covery.

[8] Liu, F. T., Ting, K. M., and Zhou, Z.-H. (2008). Isolation
forest. In Proceedings of the IEEE International Confer-
ence on Data Mining, pages 413–422.

[9] Molero, J. M., Garzón, E. M., García, I., and Plaza, A.
(2013). Analysis and optimizations of global and local ver-
sions of the RX algorithm for anomaly detection in hyper-
spectral data. IEEE Journal of Selected Topics in Applied
Earth Observations and Remote Sensing, 6(2):801–814.

[10] Reed, I. S. and Yu, X. (1990). Adaptive multiple-band
CFAR detection of an optical pattern with unknown spec-
tral distribution. IEEE Transactions on Acoustics, Speech,
and Signal Processing, 38(10):1760–1770.

[11] Wagstaff, K. L., Lanza, N. L., Thompson, D. R., Diet-
terich, T. G., and Gilmore, M. S. (2013). Guiding scientific
discovery with explanations using DEMUD. In Proceed-
ings of the Twenty-Seventh Conference on Artificial Intel-
ligence, pages 905–911.

[12] Wiens, R. C., Maurice, S., and the ChemCam team
(2011). The ChemCam instrument suite on the Mars Sci-
ence Laboratory rover Curiosity: Remote sensing by laser-
induced plasmas. Geochemical News, 145.

[13] Williford, K. H., Farley, K. A., Stack, K. M., All-
wood, A. C., Beaty, D., Beegle, L. W., Bhartia, R., de la
Torre Juarez, A. J. B. M., Hamran, S.-E., Hecht, M. H.,
Hurowitz, J. A., Rodriguez-Manfredi, J. A., Maurice, S.,
Milkovich, S., and Wiens, R. C. (2018). From Habitabil-
ity to Life on Mars, chapter 11: The NASA Mars 2020
Rover Mission and the Search for Extraterrestrial Life,
pages 275–308. Elsevier.

[14] Zhou, J., Kwan, C., Ayhan, B., and Eismann, M. T.
(2016). A novel cluster kernel RX algorithm for
anomaly and change detection using hyperspectral images.
IEEE Transactions on Geoscience and Remote Sensing,
54(11):6497–6504.

5056.pdfi-SAIRAS2020-Papers (2020)


	Introduction
	Novelty-Based Targeting for Mars Rovers
	Target Representation
	Novelty Ranking Algorithms

	Experimental Results
	Data Set
	Methodology
	Results

	Discussion
	Feature representations
	Algorithm agreement
	Novel reference targets

	Conclusions and Future Work

