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Abstract— Remote sensing instruments in Earth orbit provide
a rich source of information about current agricultural condi-
tions. Observed over time, patterns emerge that can assist in
the prediction of future conditions, such as the yield expected
for a given crop at the end of the growing season. It is
suspected that these predictions can be made more accurate
by incorporting other sources of information, such as weather
conditions from ground stations, soil properties, etc. The tools
required to access and combine large amounts of data from
multiple sources, at different spatial resolutions, are not readily
available. The HARVIST (Hetereogeneous Agricultural Research
Via Interactive, Scalable Technology) project seeks to address this
lack by demonstrating the technology required to perform large-
scale studies of the interactions between agriculture and climate.
Previously, we have developed successful software tools for
multispectral pixel classification using support vector machines,
and multispectral image pixel clustering using constrained k-
means, which we are leveraging in this effort. To date, we have
developed a graphical interface that allows users to interactively
run automatic classification and clustering algorithms on mul-
tispectral remote-sensing data. We have incorporated technical
advances that exploit the spatial nature of the data to greatly
increase classification efficiency. Our next goal is to incorporate
a predictive component to support applications such as crop yield
prediction.

I. I NTRODUCTION

Remote sensing instruments in Earth orbit provide a rich
source of information about current agricultural conditions.
Observed over time, patterns emerge that can assist in the
prediction of future conditions, such as the yield expected
for a given crop at the end of the growing season [1].
Accurate predictions can aid farmers in making decisions
about which crops to plant and what farming techniques
should be employed (“precision agriculture”). Previous work
has focused on identifying linear correlations between indices
such as NDVI (Normalized Difference Vegetation Index) and
yield for corn [2], rice [3], or cotton and soybeans [4]. While
these predictions are not as accurate as those obtained from
direct measurements of crop health, they provide more spatial
coverage and are significantly cheaper thanin situ surveys [5].

However, there are two significant limitations to existing
approaches to this problem. First, they have focused on gen-
erating yield predictions from a single data source, such as
NDVI from remote sensing in the above cases, or temperature
and precipitation data as in the Large Area Crop Inventory
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Fig. 1. The HARVIST System Architecture.

Experiment (LACIE) [6]. Scientists have identified the need
for incorporating data from multiple sources simultaneously,
such as remote sensing and weather data [3], but so far the
tools necessary for a large-scale analysis of this nature have not
been readily available. Second, these studies are also limited
in scope; they tend to focus on specific regions and only
incorporate tens of data points.

The HARVIST (Hetereogeneous Agricultural Research Via
Interactive, Scalable Technology) project seeks to address
both shortcomings by demonstrating the technology required
to perform large-scale studies of the interactions between
agriculture and climate. As shown in Figure 1, the HARVIST
system will incorporate data from remote sensing instruments,
weather ground stations, and historical crop yield databases
to generate highly accurate predictions. Using classification,
clustering, and prediction methods specifically optimized for
spatial data, users can quickly and interactively obtain results
over large areas. In addition to remote sensing and weather
data, we also propose the use of additional data sources, such
as soil properties and land cover databases, to further refine
the predictive accuracy of the system.

Predicting crop yield is just one application of the tech-
nology in the HARVIST system. It will also be possible
for scientists to conduct hypothetical “what-if” experiments
to yield better understanding of the interactions between
variables, such as temperature and crop yield.

The key innovations of this project are to (1) enhance the



(a) True-color image of central California,
including the San Francisco Bay and central
valley, acquired by MODIS/Terra, June 2,
2004, 19:00 GMT.

(b) Labels: green = vegetation; blue = water;
black = land.

(c) Classification results obtained from
training an SVM on the labels in part (b).

Fig. 2. MODIS/Terra data (courtesy Goddard Earth Sciences Data and Information Services Center), with training labels and SVM classification results.

scalability of data analysis methods (for very large, spatial
data sets), (2) integrateheterogeneous datawith different
spatial and temporal characteristics, and (3) to provide an
interactive interface that allows for easy hypothesis genera-
tion and testing. To date, we have developed an interactive,
graphical interface that allows users to label, classify, and
cluster remote sensing data. We have incorporated technical
advances that exploit the spatial nature of the data to greatly
increase classification efficiency. This paper describes the
current system’s capabilities and results. Our next goal is to
incorporate a predictive component to support applications
such as crop yield prediction.

II. HARVIST A NALYSIS METHODS

The HARVIST system now encompasses two data analy-
sis methods: support vector machines and clustering. Both
algorithms are able to take advantage of multispectral data
from remote-sensing images, allowing them to find ways to
discriminate between subtly different classes that are hard to
distinguish using only red-green-blue (human visible) images.
In addition, these methods can incorporate information from
neighboring pixels and texture features to aid in distinguishing
regions that are characterized more by shape or structure than
color.

A. Pixel Classification using Support Vector Machines

Support vector machines (SVMs) are useful when the user
has several specific classes of interest and can provide exam-
ples of each one [7], [8]. The goal is to build a classifier that
learns, from the examples provided, to automatically classify
new data in the same way. Figure 2(a) shows a sample data set,
which is an image collected from Earth orbit by MODIS (the
MODerate resolution Imaging Spectroradiometer). The pixel
labels identified by a user are shown in in Figure 2(b), and after
training an SVM on this small collection of labeled pixels,

we obtain the classification results shown in Figure 2(c).
Vegetation, land, and water are clearly distinguished and
correspond to visually reasonable areas of the image.

B. Pixel Clustering usingk-means

In contrast, clustering methods are useful when the classes
of interest are not known, or the user wishes to identify
overall trends present in the data set. Instead of providing
labeled examples, the user indicates only how many clusters
(groups of similar pixels) should be identified. This value,k,
functions as a scale parameter, dictating how fine or coarse
the inter-cluster resolution will be. We have incorporated the
k-means clustering algorithm [9] into the HARVIST system.
The results of clustering withk = 3 are shown in Figure 4(a).
Here, the colors are not associated with any interpretation in
terms of surface composition; they simply indicate distinct
clusters. Eventually, we will also include more advanced
methods for incorporating domain knowledge such as a bias
towards spatially contiguous clusters [10] or “seeding” the
cluster centers with surface types known to be present in
the image [11]. We have demonstrated the ability to classify
or cluster a given image with equal ease, by clicking the
appropriate button in the graphical HARVIST interface.

C. Prediction: Multivariate Spatial Models

Our plan is to also incorporate predictive methods into
the system, to provide the ability to predict crop yield given
specific remote sensing, weather, and other observations. In
particular, statistical models that incorporate spatial depen-
dencies can provide more accurate predictions than those that
assume that samples are independent [12]. The techniques that
we will use can model non-linear relationships, predict values
for multiple response variables simultaneously, and provide a
straightforward method for estimating the uncertainty associ-
ated with each prediction [13].



TABLE I

SAMPLE 2003CORN YIELD PREDICTION RESULTS FOR12 CALIFORNIA COUNTIES. THE BEST PREDICTION FOR EACH COUNTY IS IN BOLD.

Maximum Avg. monthly Error in bushels (rate)
County NDVI temp. (F) precip. (in.) NDVI temp.+precip. NDVI+temp.+precip.
Butte 0.348 105.1 0.41 80.0 (44.4%) 18.7 (10.4%) 11.6 (6.4%)
Fresno 0.575 107.6 2.02 6.2 (3.6%) 1.6 (0.9%) 3.8 (2.2%)
Kern 0.557 106.0 2.39 13.7 (7.9%) 5.4 (3.1%) 1.6 (0.9%)
Kings 0.463 107.6 2.07 53.2 (28.6%) 16.4 (8.8%) 2.7 (1.4%)

Madera 0.584 107.1 1.88 28.7 (20.6%) 29.5 (21.2%) 34.8 (25.0%)
Merced 0.578 106.0 1.64 32.1 (24.0%) 32.2 (24.0%) 38.7 (28.9%)

Sacramento 0.719 105.1 1.05 63.6 (44.4%) 20.0 (14.0%) 18.6 (13.0%)
San Joaquin 0.641 106.0 1.36 22.0 (13.6%) 3.2 (2.0%) 6.5 (4.0%)

Solano 0.674 109.0 1.28 21.6 (12.6%) 2.4 (1.4%) 0.5 (0.3%)
Stanislaus 0.663 107.1 1.44 15.9 (9.1%) 7.3 (4.1%) 5.5 (3.2%)

Tulare 0.632 105.8 2.33 0.6 (0.3%) 13.1 (7.2%) 14.7 (8.1%)
Yuba 0.650 108.0 0.71 11.8 (8.2%) 8.4 (5.9%) 1.1 (0.6%)

Average 29.1 (17.5%) 13.2 (7.9%) 11.7 (7.0%)

D. A Preliminary Study

In a preliminary study, we explored the ability to combine
support vector machine classification with crop yield predic-
tion on a small-scale problem. First, we trained an SVM to
automatically identify all of the cropland pixels in a larger
MODIS image that covers California’s central valley. After
training on a random subset of 3000 labeled pixels, the SVM
classified a disjoint random subset, also of size 3000, with
99.6% accuracy.

Next, we analyzed summary statistics for 12 California
counties and used least-squares linear regression to predict
corn yield. We calculated NDVI from the MODIS data,
obtained weather data (maximum temperature and average
monthly precipitation from May to October) from the NCDC,
and obtained historical corn yield data from the USDA. We
computed the regression over data from 2001 and 2002, then
used the model coefficients to predict yield for 2003. If we
only used the observed NDVI to predict yield, the average
prediction error was 18%. If we used only weather data,
we observed an error of 8%. However, when we combined
data from both sources, the error dropped to 7%. Results
for all twelve counties are shown in Table I. As expected,
predictions that incorporate multiple data sources tend to result
in increased accuracy. Despite the simplicity of this quick
study, we achieved results comparable to the state of the
art in crop yield prediction, e.g. 2-14% error in rice yield
prediction [3].

These results support our claim that analyses combining
input from multiple sources can achieve higher accuracy,
motivating the need for a system such as HARVIST that
can provide the integrated data interface. Eventually, we plan
to use the full HARVIST system to generate crop yield
predictions across the full United States.

III. C URRENT RESULTS

A. SVM Efficiency Improvements

When working with large data sets at the state, country, or
even global level, efficiency is critical. We have incorporated
two efficiency improvements into the SVM component of the

HARVIST system: the Reduced Set method and the Nearest
Support Vector method.

During the training phase, an SVM creates a classifier based
on a carefully chosen subset of the training vectors (in this
case, multispectral MODIS pixels). These vectors become the
“support vectors”. An image containing millions of pixels may
result in thousands of support vectors; while this can provide
very high classification accuracy, it comes at the expense of
speed. Each new pixel to be classified must be compared to
each of the support vectors.

Several approaches exist to improve SVM classification
speed. These can be broadly grouped into two categories:
those that obtain large speedups but require preprocessing, and
those that obtain small speedups but require no preprocessing.
We are exploring both approaches. In the first category is
the method of Reduced Sets, which finds a smaller set of
support vectors with the same relevant mathematical properties
as the larger set. We have developed a new variation on this
technique, which we call RS+, that achieves much greater
speedups than previous published methods. Still, finding a
good reduced set can take minutes or hours of computation.
In the other category, we previously developed the Nearest
Support Vector algorithm [14], which dynamically adapts the
classification computation, based on the “difficulty” of each
item to be classified, so that easy items can be quickly
classified and computation time can be largely devoted to the
more difficult items. So far, we observe only a 2x speedup in
most real-world cases, but no preprocessing is required.

Our eventual goal is to develop a hybrid between these
two methods, with virtually no increase in error while still
achieving speedups of 10x. We have assessed this hybrid
method experimentally, again on the task of recognizing crops
in MODIS images. Figure 3 shows plots of the error rate
(compared to the full SVM) and the speedups obtained by
running a new variant of the Nearest Support Vector method
aided by a “quick” reduced set that required very little time
to compute. There is a clear tradeoff between efficiency and
error rate. As the number of support vectors increases, the
error decreases, as does the effective speedup.



(a) Classification error rate as a function of
the size of the reduced set used.

(b) Speedup (efficiency) obtained as a
function of the size of the reduced set.

Fig. 3. The tradeoff between error rate and speedup when using the Reduced Set SVM method.

(a) Clusters (green, cyan, and grey) identi-
fied when clustering withk = 3.

(b) SVM classification output; vegetation
class is marked green. (Same as Fig. 2(c).)

(c) Three clusters (red, yellow, and green)
identified within the vegetation class only.

Fig. 4. Clustering results on MODIS data. Each cluster’s pixels are represented with a different color; colors themselves have no intrinsic meaning.

B. Integration of Clustering and Classification

One of our primary goals with the HARVIST project is
not simply to provide multiple standalone analysis methods,
but also to enable them to leverage each other’s strengths
by exchanging data and results. Therefore, we also added
the ability to combine classification and clustering by first
classifying an image, then identifying one of those classes as
worthy of further exploratory analysis and applying clustering
only to the pixels contained in the selected class. No manual
intervention is required between these phases; the user simply
clicks “classify” and then “cluster” to identify the sub-regions
present in the class of interest. This process permits the user to
focus the clustering algorithm’s attention on specific classes,
without needing to analyze the entire image at once. It is
thereby possible to identify subtle distinctions within a class
that would be swamped by the larger differences between
classes when analyzing the entire image.

Figure 4(c) shows this scenario in action. Here, we have
restricted clustering to the vegetation class only, as identified

in Figure 4(b). As compared to Figure 4(a), we see that
finer distinctions are identified, which may correspond to
differences in land cover type, moisture in the soil, or other
local conditions. A full interpretation of the clusters requires
the examination of the cluster centers, which summarize the
overall characteristics of the pixels assigned to each cluster.
Displaying the cluster centers is one of the next capabilities
we plan to provide.

IV. DATA FUSION

We have also designed a multi-resolution image mosaic
grid, which will allow us to incorporate remote sensing data
at multiple spatial and temporal resolutions. Because we
plan to incorporate data from multiple sources, with different
resolution capabilities, it is essential that we be able to merge
them in a principled way. In addition, we want to provide the
ability to quickly browse the data at a low spatial resolution,
identify regions of interest, and then apply analysis methods
to the underlying data at high spatial resolution. We currently
plan to approach this problem using a spatiotemporal grid as



Fig. 5. Proposed multi-resolution image analysis grid.

shown in Figure 5. For clarity, we here show the multiple
spatial resolutions, but there is also a time component; we aim
to store and provide data at a one-month temporal resolution.

The multiple levels of resolution exist so that we can easily
browse the data collection while still applying our analysis
methods at the highest reasonable resolution provided by each
instrument. As shown, we will provide browse capabilities at
the lowest spatial resolution (1 arcminute or 1.8 km per pixel),
which is sufficient for the identification of regions of interest,
such as agricultural areas. For analysis purposes, we will work
with MODIS data at 15 arcseconds or 1.1 km per pixel, which
is sufficient for the identification of individual crop fields. We
also have access to LandSat data for some regions at a very
high spatial resolution (4 arcseconds or 120 m per pixel),
permitting the identification of specific crop types. We prefer
to use the MODIS data for our actual analysis, as it is freely
available and provides better temporal coverage than LandSat
can. This is particularly important for tracking the maturation
of crops over the growing season. However, LandSat is useful
for verification of our results, and it will aid us in training a
crop type classifier to further specialize our methods based on
the type of crop present in a given area.

V. CONCLUSIONS

In this paper, we have presented the HARVIST system,
which provides advanced statistical analysis methods that can
be applied to data from heterogeneous sources, such as remote
sensing and weather data. We have described the current
status of the system, which now includes both classification
and clustering methods. A next step will be to integrate
a predictive component to provide the ability to estimate
numeric values associated with spatial locations, such as crop
yield for counties across the United States. In a preliminary
study, we showed that combining multiple data sources results
in higher accuracy for these predictions.

A new contribution of this system is the ease with which
users can integrate the results of different analyses. As one

example, we showed how classification results could be used
to restrict the input to a clustering method, to permit a focus
on details only within that class.

Finally, we have presented our ideas for how to address
the data fusion problem. We will combine data that has
been recorded at different spatial and temporal resolutions by
registering it onto a multi-resolution data analysis grid. We
expect to refine this data hierarchy as we explore additional
data sources.
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