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Novelty/Anomaly Detection

Anomalies we care about
Heart attacks
Earthquakes
Stock market crashes
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Subsequent anomalies aren’t interesting:
Hiccups ¢
The boy who cried wolf |
Allergic reactions

““Statistically anomalous” # “interesting”




Novelty Detection for Radio Astronomy

Fast transients: brief, energetic pulses

X-ray bursts, pulsars,
neutron stars, active galactic

nuclei, etc.

RFI: brief, energetic pulses
Terrestrial origin: cars, cell phones, satellltes

Low false positive rate is vital
Human effort required to review candidates
Avoid overflowing data buffer

State of the art: matched filter
Can we do better?



SSEND Concept

Construct eigenbasis, then compute
novelty score using reconstruction error

Novel features

Online updates based on incoming data

Semi-supervised:
informed by known “ignorable anomalies”



Online Updates

* Compute principal components:

X=U0Uxv*
* Online PCA [Lim et al., 2004]
> Given UpEprzj new data X, get U2, V1
> No need to explicitly store X,

Principal Components

Data

Time




Semi-superyvision

Compute principal components from
training data (ignorable anomalies):
XS — USZS‘/;T

Combine bases and use

QR decomposition to orthogonalize:
Ue = [Ur|Us]

Retain first few bases in A

Compute reconstruction error:

f(zs) = ||z — &i|| = ||z — AA  4]|2
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Data

* Parkes Multibeam Survey [Edwards et al.,2001]

+  |° 1.4 GHz, 125 us sample time, 96 channels

> Goal: detect pulsars

1" * ... but other anomalies also lurk within

Pulsar pulse “Peryton” Radio Fregq. Interference
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Experiments

Subsample and segment data every |5 ms
576-dimensional (6 time steps x 96 channels)

Construct U, online; retain 4 bases

Train U, using 30 manually selected RFI
Collapse to 10 bases



Results
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Novelty Scores
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Summary

SSEND: Novelty detection that
Adapts to changing data properties

Avoids flagging known uninteresting anomalies

Novelty score:

Reconstruction error using combined bases
from online PCA + static prior bases

Application to radio astronomy

And anytime false positives are costly
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