Semi-Supervised Novelty Detection with Adaptive Eigenbases, and Application to Radio Transients

David R.Thompson, Walid A. Majid, <u>Kiri L.Wagstaff</u>, and Colorado J. Reed

Jet Propulsion Laboratory, California Institute of Technology

October 21, 2011

Novelty/Anomaly Detection

- Anomalies we care about
 - Heart attacks
 - Earthquakes
 - Stock market crashes

- Subsequent anomalies aren't interesting:
 - Hiccups
 - The boy who cried wolf
 - Allergic reactions

"Statistically anomalous" ≠ "interesting"

Novelty Detection for Radio Astronomy

- Fast transients: brief, energetic pulses
 - X-ray bursts, pulsars, neutron stars, active galactic nuclei, etc.

- Terrestrial origin: cars, cell phones, satellites
- Low false positive rate is vital
 - Human effort required to review candidates
 - Avoid overflowing data buffer
- State of the art: matched filter

Can we do better?

SSEND Concept

- Construct eigenbasis, then compute novelty score using reconstruction error
- Novel features
 - Online updates based on incoming data
 - Semi-supervised: informed by known "ignorable anomalies"

Online Updates

Compute principal components:

$$X = U\Sigma V^T$$

- Online PCA [Lim et al., 2004]
 - ullet Given $U_p\Sigma_pV_p^T$, new data X_q , get $U_r\Sigma_rV_r^T$
 - $^{\circ}$ No need to explicitly store X_p

Semi-supervision

 Compute principal components from training data (ignorable anomalies):

$$X_s = U_s \Sigma_s V_s^T$$

Combine bases and use
 QR decomposition to orthogonalize:

$$U_c = [U_r | U_s]$$

- Retain first few bases in A
- Compute reconstruction error:

$$f(x_i) = ||x_i - \hat{x}_i|| = ||x_i - AA^T x_i||_2$$

Data

- Parkes Multibeam Survey [Edwards et al., 2001]
 - I.4 GHz, I25 µs sample time, 96 channels
 - Goal: detect pulsars
 - ... but other anomalies also lurk within

Parkes telescope multibeam receiver

Time

Experiments

- Subsample and segment data every 15 ms
 - 576-dimensional (6 time steps x 96 channels)

- Construct U_r online; retain 4 bases
- ullet Train U_s using 30 manually selected RFI
 - Collapse to 10 bases

Results

Eigensignals

Ignorable RFI

Novelty Scores

Summary

- SSEND: Novelty detection that
 - Adapts to changing data properties
 - Avoids flagging known uninteresting anomalies
- Novelty score:
 - Reconstruction error using combined bases from online PCA + static prior bases
- Application to radio astronomy
 - And anytime false positives are costly

Thank you: Sarah Burke-Spolaor, J-P Macquart, Dayton Jones, Bob Preston, Joseph Lazio, and the SURF program.

This work was carried out at the Jet Propulsion Laboratory, California Institute of Technology, © 2011. Government sponsorship acknowledged.