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Introduction: The TextureCam concept is a “smart
camera” that aims to improve scientific return by in-
creasing science autonomy and observation capabilities
both when the spacecraft is stationary and when it is
traversing. This basic onboard science understanding
can summarize terrain encountered during travel [1] and
direct autonomous instrument deployment to targets of
opportunity [2]. Such technology would assist Mars
sample caching or return missions where the spacecraft
must survey vast areas to identify potential sampling
sites and habitat indicators.

The instrument will use texture channels to differenti-
ate and map habitat-relevant surfaces. Here we use the
term texture not in the geologic sense of formal physi-
cal properties, but rather in the computer vision sense to
mean statistical patterns of image pixels. These numer-
ical signatures can in turn distinguish geologically rel-
evant elements such as roughness, pavement coatings,
regolith characteristics, sedimentary fabrics and differ-
ential outcrop weathering. Similar algorithms can per-
form microstructure analysis and sedimentology using
microscopic images. On the scale of meters, surfaces
and features can be recognized to summarize rover tra-
verse and draft surficial maps for downlink.

Reliable image classification in field conditions is dif-
ficult due to factors like variable lighting, surface con-
ditions, and sediment deposition. Future development
aims for reliable recognition of basic geological ele-
ments. Rad-hardened FPGA processing will instanti-
ate these general-purpose texture analysis algorithms as
part of an integrated, flight-relevant prototype.

Experimental setup: An initial test demonstrates
automatic recognition of stromatoform structures in out-
crop. These surfaces have distinctive laminar textures
that may indicate previous biogenic activity [3] and
would be valuable targets for followup investigation and
human review. While it would be unlikely to find such
features exposed on the Mars surface, they provide a
controlled test to guide initial development and evalua-
tion. We use a machine learning approach, training the
system on example pixel labels supplied by the designer.
This yields a statistical model of pixel relationships that
can classify new surfaces (Figure 1).

Stromatolite images were acquired from the Pilbara
formation [3]. We consider three outcrops of laminar
structures with conical and wavy morphologies. We also
include a scene containing much finer-scale localized
egg carton laminations. These all show a common lay-
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Figure 1: Top: Original image. Bottom: Automatic surface
map showing the probability of belonging to the stromatolite
class. Green, yellow and orange are uncertain classifications.

ering structure that we aim to distinguish automatically
from the surrounding surface. We hypothesize that the
statistical properties of the image textures are generaliz-
able across the three stromatolite types.

Method: All image pixels were labeled by hand
as belonging to one of three classes: (1) stromatoform,
(2) non-stromatoform, or (3) ambiguous/unclassified. A
high-pass filter mitigates most differences in shadow
and illumination and reveals small-scale surface texture
(Figure 2 Right). We use a single color channel, and
rotate the training image and labels by 15-degree incre-
ments to provide generality and rotational invariance.

We use this training data to construct a random forest
pixel classification system [4]. It combines the result of
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A high-pass filter reduces variability due to shadows and illu-
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Figure 3: Decision tree classification. We aim to classify
the pixel marked with an ’X;’ it propagates down a tree of
left/right decisions to arrive at a classification label. The deci-
sion at each intermediate node applies a threshold test to one
or more pixel values from its local neighborhood.

multiple independent decision tree classifiers. Each tree
is a hierarchical sequence of tests applied to local image
values in the neighborhood of the classified pixel. Each
test considers a numerical attribute such as (1) the abso-
lute intensity of a nearby location, at some offset relative
to the target pixel; (2) the difference in intensity between
two nearby locations; or (3) the absolute difference in
intensity between two nearby locations. A threshold on
the attribute determines whether the pixel will propagate
left or right. Such tree sequences can form complex de-
cisions based on local edges, discontinuities, and other
characteristic microtexture. Figure 3 illustrates the con-
cept for classification of a pixel marked X. It propa-
gates down a simple tree of binary decisions - tests on
values within a local neighborhood represented by the
red rectangle. The population of pixels arriving at each
final node of the decision tree gives a distribution over
classes for pixels that follow this path.

The training procedure grows each decision tree from
a single root node. At each new decision node, it
searches a random subset of possible tests to find the
most informative one as determined by an expected in-
Sformation gain metric [5]. This score captures the un-
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Figure 4: Test scene ROC performance

certainty in classes of the pixels in the resulting left and
right subpopulations, weighted by size. We grow all
trees for a fixed number of iterations. The process takes
just a few minutes on a modern consumer-grade CPU.

Results: We evaluate performance on each image
by training on the two other images (Leave One Out
Cross Validation). Figure 4 shows Receiver Operat-
ing Characteristic (ROC) curves for the pixels in two
scenes: scene A with wavy morphology; and B which
introduces weathering and variable depth-of-field. The
image of a conical stromatolite (Figure 2) has insuffi-
cient stromatoform pixels for a confident ROC estimate
so we omit it from the test set. ROC performance sug-
gests that the laminar structures are recognizable across
images, with reasonable performance given the limited
training data.

Figure 1 shows the original image for scene B along
with the final surficial classification probabilities. Val-
ues near P = 0.5 indicate ambiguous classifications.
The classification learns to favor areas with multiple
narrow layers; aligned fractures in the non-stromatolite
surface are a main source of errors. One solution could
be a larger training set that includes non-stromatolite
laminae. A complementary solution is a subsequent
segmentation step to clean the map into contiguous ar-
eas and eliminate small clusters of outlier pixels without
support from neighboring areas [5].
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