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Introduction: The martian frost cycle is a key driver
of both climate and geomorphological features on the
surface of Mars. To better understand the martian frost
cycle, we are interested in building global maps of frost
across the Mars year using automated detection within
visible, thermal, and other multispectral and hyperspec-
tral observations. The CRISM (Compact Reconnaissance
Imaging Spectrometer for Mars) instrument, which col-
lects data in infrared (IR, 1.0–3.9 µm) and visible/near
infrared (VNIR, 0.4–1.0 µm) wavelengths remotely from
orbit, can be used for automated detection and impor-
tantly, enables the differentiation of frost types (CO2 and
H2O). However, VNIR wavelengths, analyzed with the
new “ICV” (from “ices in VNIR”) spectral parameteriza-
tion [1], typically produce less robust detections of frost
compared with ICE (from “ices”), which uses both VNIR-
and IR-derived parameters [2]. Our analysis character-
izes some spectral properties that can lead to false positive
frost detections using ICV. These results inform methods
for excluding problematic observations when ICV is used
for automated frost detection for global mapping.

Background: There are several science and engineer-
ing motivations for understanding the martian frost cycle.
Frost deposition and sublimation drive large changes in
pressure throughout the seasonal cycle, with significant
effects on the martian climate [3]. Second, the frost cycle
is hypothesized to be a driver of geomorphological feature
formation and evolution on the martian surface, including
frost-driven avalanches contributing to gully formation,
and sublimation-driven jets that lead to araneiforms [4].
Frost can also impact surface operations, such as when it
accumulated on Phoenix solar panels.

Prior work on martian frost mapping has utilized both
visible High Resolution Imaging Experiment (HiRISE)
and thermal Mars Climate Sounder (MCS) data for de-
tection [5]. This work focuses on characterizing frost
detection using observations made by the CRISM instru-
ment, which unlike HiRISE and MCS, can differentiate
between H2O and CO2 frost using diagnostic absorptions
in the IR range. However, CRISM IR data acquisition was
suspended in 2018 with the retirement of the cryosystem.
This motivates the use of VNIR-only methods like ICV
to cover the post-2018 observing period. For evaluation
purposes, we use Map-Projected Targeted Reduced Data
Records (MTRDRs) acquired in Hyperspectral Mode that
include both VNIR and IR wavelengths.

In order to summarize a spectrum, scientists use spec-
tral parameters, which are functions of the signal level
at a selected set of wavelengths. For our purposes, the

most important of these parameterizations is relative band
depth, a measure of the strength of a spectral absorption
feature relative to the continuum level. While ICE is a
spectral parameterization that has been used to robustly
detect frost using IR observations, ICV is intended to en-
able frost detection in VNIR-only observations. Given
that the causes of false negative detections are relatively
well-known (e.g., icy soil, transparent CO2), the scope of
the project is to focus on false positives. This, in turn,
will allow us to better deploy the ICV map for automating
frost detection.

Approach: Because we are interested in character-
izing false positive detections using ICV, we focus on
observations in the northern mid-latitude region during
seasons when MCS-derived surface temperatures are well
above the frost point. Therefore, all ICV-based frost de-
tections are likely to be false positives.

Our evaluation dataset consists of 708 summertime
MTRDR observations from the Planetary Data System
(PDS). Following the recommended methodology for ap-
plying the ICV parameter map, we use pixels with a red-
blue ratio (RBR) exceeding a value of 3 as an indication
of surface frost [1]. The red-blue ratio is computed by di-
viding smoothed reflectance at 770 nm by that at 440 nm.
Application of the RBR mask revealed 113 observations
with at least one false positive pixel.

Each observation containing a positive pixel is pro-
cessed by two pipelines to generate diagnostic plots for
visual inspection and to extract quantitative informa-
tion. The plotting pipeline creates visualizations for each
observation containing a representation of the CRISM
VNIR spectrum along with several parameter maps: ICV,
ICE, and BDI1000VIS (indicative of mafic composi-
tion and a known confounder of ICV). The quantita-
tive pipeline clusters pixels from observations contain-
ing false frost detections to determine whether they share
common spectral characteristics. The features extracted
for each pixel include the band depths at 800 and 530 nm
(BD800 and BD530 2, two parameters of the ICV map),
and the BDI1000VIS and RPEAK1 parameters, which
initial analyses suggested would help to identify terrains
likely to produce false positives.

To perform a clustering analysis, we use the mini-
batch k-means algorithm, which is an adaptation of the
standard k-means algorithm that performs iterative up-
dates using subsets of the full dataset [6]. Because we
want to analyze pixels across a representative set of ter-
rains, and some observations contained many more false
positives than others, at most 10 false positive pixels are
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Figure 1: Examples of the two primary clusters in the dataset with high (top) and low (bottom) values of BDI1000VIS (middle)
corresponding to the ICV false frost detections, colored pixels covering most of the scene (left). BDI1000VIS values are normalized,
so they appear darker in Cluster 1 due to having values below that of surrounding pixels even though absolute values are above
those in Cluster 2. Pixels in these clusters have Low BD530 2 values and tend to correspond to darker material in the visible image
(right). Examples of Clusters 3 and 4 with High BD530 2 values are omitted since they typically consist of single pixels.
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Figure 2: Clustering results projected into two-dimensions us-
ing multi-dimensional scaling (MDS). The two axes in this
space primarily correspond to differences in BDI1000VIS and
BD530 2 values across pixels.

sampled from each image. A value of k = 4 was deter-
mined empirically by increasing the value until further
increases no longer split the samples into meaningful cat-
egories. The multi-dimensional scaling (MDS) algorithm
is used map the multi-dimensional clustered data into a
2-dimensional space for visualization.

Results: We observe four distinct clusters in the
data resulting from the combinations of two main fac-
tors: the level (High/Low) of BDI1000VIS as well as the
level (High/Low) of the BD530 2 parameter. When these
are cross-referenced with the visual plots, high values of
BD530 2 are seen to correspond with single pixels cor-
rupted by noise. Figure 1 shows representative examples
of the clusters with low BD530 2 values, comprising the
majority of false positive pixels. A plot of all clustered
points projected using MDS is shown in Figure 2.

Analysis of the spectra within each cluster do not re-
veal any obvious data quality issues for Clusters 1 and 2,

although the RPEAK1 parameters for Clusters 1 and 3
are null, and some spectra in Cluster 2 are deeply sloped
between 775 and 975 nm. While further analysis is re-
quired, hypotheses to explain these clusters include the
presence of mafic material, glasses, or aerosols.

Conclusions: In summary, after clustering false posi-
tive pixels attached to geophysical markers from over 100
summertime CRISM MTRDRs, we identified two un-
derlying causes of systematic false positive pixels apart
from noisy observations. The signatures of these false
positives provide a strategy to mask out terrain when de-
ploying ICV for frost detection during winter months.

In future work, we plan to include southern hemi-
sphere observations in our analysis of false positives. We
would also like to compare the frost detection efficacy of
ICV to that of ICE. This requires determining a set of
criteria for producing a binary frost mask from ICE to
which ICV would be compared during the winter season.
Once the performance of ICV has been characterized, we
will better understand the possibilities and limitations of
deploying it for automated frost detection and mapping.
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