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Introduction: Automated classification of planetary
science image data enables content-based search of large
archives such as those held by the NASA Planetary Data
System (PDS). For example, the PDS Image Atlas uses
machine learning to help users quickly find images of
interest from the HiRISE instrument on the Mars Recon-
naissance Orbiter or the Mastcam and MAHLI instru-
ments on the Mars Science Laboratory rover [1] [2].

Building on these successes, we have trained the first
classifier for images collected by the Pancam instruments
on theMarsExplorationRovers (MER) and used it to clas-
sify 15,601 images in the PDS archive. These classifica-
tions can be used to search and filter Pancam images via
the Atlas at https://pds-imaging.jpl.nasa.gov/
search/. Unlike the classifiers employed for HiRISE,
Mastcam, and MAHLI instruments, MERNet is a multi-
label classifier that can detect the presence of more than
one category within an image. For example, an image
may be labeled as containing both “Soil” and “Clasts”.

(a) Rover tracks (b) Soil trench (c) Outcrop rocks (d) Float rocks

(e) Clasts (f) Bright soil (g) Dunes/ripples (h) Spherules

Figure 1: Examples of selected classes in the MER dataset.

MER Pancam Images: The Pancam instrument is a
stereo pair of science cameras, and each camera has an 8-
position filter wheel. In this work, we used images taken
by the second filter of the left-eye (“L2”) camera, and we
used only the highest resolution images (512 × 512 and
1,024 × 1,024). To generate a representative dataset, we
randomly sampled 20% of the high-resolution images at
each rover investigation site, yielding 3,004 images [3].

We identified 25 classes based on the MER Data
Catalog User Survey with participants including scien-
tists and engineers from MER teams, faculty members
and students from research universities, and general pub-
lic [4]. We also performed a class discovery process using

the DEMUD [5] novelty detection algorithm which itera-
tively selects the most “interesting” or unusual images in
a collection. Example images are shown in Figure 1, and
statistics of each class are shown in Table 1. The dataset
of 3,004 images was labeled using Zooniverse.org.

MERNet Classifier: The MERNet classifier is a
multi-label convolution neural network (CNN) that clas-
sifiesMER Pancam images into 25 classes. TheMERNet
classifier was built using transfer learning techniques, in
which the knowledge learned from images on Earth was
transferred to classify images on Mars. We used the
VGG-16 CNN architecture [6] and retrained the network
to output 25 Mars-relevant classes.

We employed a “classifier chain” [7] to allow the
MERNet classifier to check individually for the presence
of each possible class within an image. The order of
classes in the chain is shown in Table 1. In contrast to
the multi-label approach employed for the classification
of Cassini Imaging Science Subsystem (ISS) images, in
which 19 individual binary classifiers were trained to
detect the presence of classes such as “craters”, “horizon”,
“noise”, “artifact”, etc. [8], the classifier chain allows the
explicit modeling of dependencies between classes. For
example, “Bright soil” often co-occurswith “Soil trench”,
as in Figures 1(b) and (f).

To improve the performance of the classifier on new
images, we expanded the dataset to include “augmented”
variants of each image. These are generated through
geometric transformation such as rotating, skewing, or
shearing an image to yield a different perspective that
could appear in other Pancam images. The dataset was
split to use 60% for training, 15% for validation, and
25% for testing. Augmentation was applied only to the
training and validation sets. The combined dataset con-
tains 70,864 labeled images. The parameter values of the
three augmentation methods were constrained such that
the resultant augmented images do not crop out important
features at the edges of the original images.

We fine-tuned the MERNet classifier using the train-
ing data for 34,995 iterationswith a batch size of 8 images,
a learning rate of 0.0001 for the of convolution layers, and
a learning rate of 0.001 for the final fully connected layer.
TheMERNet classifier uses a confidence threshold of 0.9
to determine which images will be shown to users. To
ensure that the classifier self-reported posterior probabil-
ities are well calibrated, we employed Platt scaling [9] to
adjust the output for each class. Platt scaling selects a
temperature T and bias b to transform the logits Zi out-
put by the classifier for image xi prior to the conversion
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Table 1: Performance results for the MERNet classifier before and after calibration. Precision (0.9) and recall (0.9) indicate
precision and recall given a confidence threshold of 0.9; colors indicate scores ≥0.80 or ≤0.50. Majority, minority, and extreme
minority classes are marked with ∗, †, and ‡. The lowest ECE and highest precision and recall scores per row are shown in bold.

Class distribution Test set (before calibration) Test set (after calibration)
Class Name Count Percent ECE Precision (0.9) Recall (0.9) ECE Precision (0.9) Recall(0.9)
Rover deck† 222 7.39% 0.026 0.80 0.62 0.012 0.91 0.53
Pancam calibration target‡ 14 0.45% 0.016 0.00 0.00 0.011 0.00 0.00
Arm hardware‡ 4 0.13% 0.009 0.00 0.00 0.006 0.00 0.00
Other hardware‡ 116 3.86% 0.044 0.00 0.00 0.017 0.00 0.00
Rover tracks∗ 301 10.02% 0.073 1.00 0.24 0.020 1.00 0.18
Soil trench‡ 34 1.13% 0.012 0.00 0.00 0.007 0.00 0.00
RAT brushed target‡ 17 0.57% 0.019 0.00 0.00 0.011 0.00 0.00
RAT hole‡ 30 1.00% 0.042 0.00 0.00 0.028 0.00 0.00
Outcrop rocks∗ 1,915 63.75% 0.011 0.95 0.57 0.011 0.96 0.47
Float rocks∗ 860 28.63% 0.021 0.90 0.40 0.012 0.87 0.29
Clasts∗ 1,676 55.79% 0.033 0.94 0.64 0.010 0.95 0.52
Misc. rocks† 249 8.29% 0.033 0.00 0.00 0.017 0.00 0.00
Bright soil‡ 122 4.06% 0.033 0.68 0.34 0.017 0.92 0.32
Dunes/ripples∗ 1,000 33.29% 0.041 0.83 0.48 0.017 0.90 0.33
Rock (linear feature)∗ 943 31.39% 0.016 0.84 0.43 0.007 0.88 0.28
Rock (round feature)† 219 7.29% 0.017 0.67 0.05 0.009 1.00 0.08
Soil∗ 2,891 96.24% 0.027 0.99 0.96 0.014 0.99 0.93
Astronomy‡ 12 0.40% 0.010 0.00 0.00 0.008 0.00 0.00
Spherules∗ 868 28.89% 0.016 0.88 0.25 0.012 0.90 0.12
Distant vista∗ 903 30.23% 0.049 0.96 0.69 0.023 0.96 0.60
Sky∗ 954 31.76% 0.030 0.97 0.86 0.017 0.97 0.83
Close-up rock‡ 23 0.77% 0.042 0.00 0.00 0.017 0.00 0.00
Nearby surface∗ 2,006 66.78% 0.013 0.97 0.90 0.012 0.99 0.83
Rover parts∗ 301 10.02% 0.060 1.00 0.53 0.025 1.00 0.39
Artifacts‡ 28 0.93% 0.032 0.00 0.00 0.012 0.00 0.00

of Zi into a posterior probability p = 1

1+e−Zi,k/Tk+bk
,

where Zi,k is the logit for image i and class k. The pa-
rameters T and b are optimized using L-BFGS algorithm
with respect to the binary cross entropy loss on the vali-
dation set. Expected calibration error (ECE) [10] is used
to quantitatively measure classifier calibration.

Results: The performance of the MERNet classifier
is measured in terms of precision and recall per class
on the test set (Table 1). We designate the classes as
majority (>10%), minority (5–10%), or extreme mi-
nority (<5%) based on their representation. Majority
classes (e.g., “Outcrop rocks”, “Soil”) achieve good per-
formance. Minority class (e.g., “Miscellaneous rocks”,
“Rock (round feature)”) performance is generally lower.
Extreme minority classes (e.g., “Pancam calibration tar-
get”, “Arm hardware”) often exhibit precision and recall
of zero due to the very small number of labeled exam-
ples. Up-samplingminority and extrememinority classes
may be helpful for improving their performance, and this
is an area of future work. Applying the Platt scaling
method consistently improved the classifier calibration
(see Table 1 ECE columns; lower is better) and generally
increased the thresholded precision scores at the cost of
reducing recall scores (by abstaining), thereby yielding

more reliable predictions. The only class to exhibit lower
precision was “Float rocks” (declined from 0.90 to 0.87).

Conclusions and Next Steps: In this work, we
demonstrated the use of deep learning fine-tuning tech-
niques to create the first machine learning application that
annotates MER Pancam image content and enables users
to quickly find images of interest. Future work will focus
on improving performance for the minority classes. In
addition, we aim to expand these capabilities to images
of other bodies such as the Moon.
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