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Abstract—Future large radio astronomy arrays, particularly 
the Square Kilometre Array (SKA), will be able to generate 
data at rates far higher than can be analyzed or stored 
affordably with current practices.  This is, by definition, a "big 
data" problem, and requires an end-to-end solution if future 
radio arrays are to reach their full scientific potential.  Similar 
data processing, transport, storage, and management 
challenges face next-generation facilities in many other fields.   

The Jet Propulsion Laboratory is developing technologies to 
address big data issues, with an emphasis in three areas:  1) 
Lower-power digital processing architectures to make high-
volume data generation operationally affordable, 2) Date-
adaptive machine learning algorithms for real-time analysis 
(or "data triage") of large data volumes, and 3) Scalable data 
archive systems that allow efficient data mining and remote 
user code to run locally where the data are stored. 1  
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1. INTRODUCTION 

Future large radio astronomy arrays, particularly the 
Square Kilometre Array (SKA), will be able to generate 
data at rates far higher than can be analyzed or stored 
affordably with current practices.  This is, by definition, a 
"big data" problem, and requires an end-to-end solution if 
future radio arrays are to reach their full scientific potential.  
Similar data processing, transport, storage, and management 
challenges face next-generation facilities in many other 
scientific fields as well as a large number of data-intensive 
industries (financial, biotech/medical, telecommunications, 
etc.).   
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The Jet Propulsion Laboratory (JPL) is developing 
technologies to address big data issues, with an emphasis in 
three main areas:   

1.  Lower-power digital processing architectures to make 
high-volume data generation operationally affordable.   

2.  Date-adaptive machine learning algorithms for real-time 
analysis (or "data triage") of large data volumes.  

3.  Scalable data archive systems that allow efficient data 
mining and remote user code to run locally where the data 
are stored.   

Power consumption and cooling of systems like cross-
correlators for large arrays can be prohibitively expensive.  
An optimized ASIC architecture can provide order-of-
magnitude reductions in power usage compared with 
traditional correlator design approaches [1-3].   

Real-time data-adaptive software innovations at JPL have 
focused on the detection of fast (< 1 second) transient 
signals in high-rate data streams.  These include known 
signals such as pulsars as well as signals that deviate from a 
standard dispersed-pulse profile.  Here is a prime example 
of a situation where it is impractical to store the high time 
and spectral resolution data from many antennas for later 
analysis.  A fast radio transient detection system using data-
adaptive algorithms has been deployed on the Very Long 
Baseline Array, a facility of the National Radio Astronomy 
Observatory [4-6].  This technology has also been adapted 
to radio frequency interference excision and could be used 
for real-time anomaly detection in array monitoring data.  

Work in the data archiving and data mining area is based on 
previous JPL investments in a data archive framework for 
Earth science missions (PCS/OODT) [7].  This framework 
is being used for an ever-increasing number of non-
astronomy applications, and is currently being adapted for 
use by radio observatories.  

Recent progress in each of these areas, along with possible 
paths for further development of the relevant technologies, 
will be described in the following sections.  Dealing with 
big data issues in an integrated end-to-end manner will be 
an essential aspect of the design of many large observational 
systems in the future.  We see future application of these 
technologies in both ground-based and space-based systems, 
for both astronomy and non-astronomy uses.  
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2. DATA GENERATION  

Most big data problems begin, almost by definition, with the 
generation of data at a rate too high to be handled by the 
data transport infrastructure or the real-time data processing 
systems available, or data volumes too large to be stored for 
traditional off-line analysis.  This situation occurs with 
increasing frequency in science, where sensor technology 
allows ever-increasing numbers of pixels, spectroscopic 
resolution, and time sampling.  A prime example in radio 
astronomy is the SKA, which will produce raw data from its 
many antennas at a combined rate of order PB/s.   Similar 
examples abound in high energy physics, many types of 
surveillance operations, and some data-intensive industries.  

One aspect of high-rate data generation that is becoming 
increasingly important is the high power consumption (and 
associated cooling requirements) of large sensor networks.  
In the case of radio astronomy interferometer arrays, digital 
cross-correlation of data from many antennas is often one of 
the significant power uses.  JPL has developed an improved 
ASIC architecture (see Figure 1) that minimizes power used 
for data movement and memory.  This approach can reduce 
the power consumption of a large correlator by more than an 
order of magnitude compared to current architectures.   
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Figure 1– Conceptual block diagram of a demonstration 
correlator ASIC.  High speed I/O uses differential 
signaling, with 16 parallel input bits and 8 parallel 

output bits.  Rates shown are achievable in the IBM 
32nm process [3]. 

 

A related effort involves fast transient radio signal detection 
at the Australian SKA Pathfinder array (ASKAP).  Here the 
challenge is processing large quantities of data from beam-
forming electronics in real time, prior to cross-correlation.  
The basic approach in shown in Figure 2.  This development 
is based on FPGAs, which implement algorithms to correct 
for dispersion caused during signal propagation through the 
ionized interstellar medium, combine signals from multiple 
antenna, detect transients, and signal buffer memories in the 
beamformers to store the raw data during a transient event.  

The time resolution of this system is about 1 ms, and the 
trigger to the data buffers must occur within about 1 second.  

Figure 2 – Block diagram of multi-antenna, multi-beam 
radio transient detection for the Australian SKA 

Pathfinder ASKAP.  Data from beamformers enter at 
left; trigger causes buffered input data to be saved. 

 
This is an example of “data triage.”  Only a small fraction of 
data prior to cross-correlation (and time averaging) can be 
stored for later analysis.  It is essential that decisions about 
what small fraction of raw data should be saved are made 
rapidly and correctly.  Once data are time-averaged, there is 
no way to go back and extract information on fast transient 
signals that may have been present. 

3. DATA TRIAGE  

The concept of data triage can be generalized in many ways, 
even within the rather narrow niche of fast transient radio 
source detection.  Figure 3 shows a fast transient detection 
system based on more powerful and flexible approaches to 
data triage.  This system has recently become operational on 
the Very Long Baseline Array (VLBA), a continent-wide 
array of 10 radio antennas operated by the National Radio 
Astronomy Observatory [4].  It uses machine learning (data-
adaptive) algorithms developed at JPL instead of hard-wired 
detection schemes [5].  

 
Figure 3– Block diagram of fast transient detection 

system currently installed on the VLBA [5].  Intelligent 
software (machine learning, light blue boxes) makes this 

system highly efficient and adaptive to interference. 
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The advantage of machine learning algorithms is that they 
can improve the effectiveness of data triage.  In the radio 
astronomy case, an important part of the decision process is 
deciding if a given transient signal is from an astronomical 
source or terrestrial radio frequency interference (RFI).  
Machine learning allows the system to continuously 
improve its knowledge of what RFI looks like. 

As an example, figure 4 shows simultaneous digitized signal 
voltages from nine VLBA antennas. The faint peaks marked 
with arrows are periodic pulses from a known radio pulsar. 
Everything else is thermal noise from the receivers, RFI, or 
system gain variations.  

 

Figure 4 – Time series from nine VLBA antennas [6].  
The horizontal axis covers about 4 seconds of time.  The 
vertical axis is proportional to received signal amplitude 

from each of the antennas.  

 
The ability to distinguish “interesting” signal peaks from the 
rest of the data is critical.  A data-adaptive algorithm can be 
trained with examples of random noise, RFI, instrumental 
errors, and other known types of error and will reject signals 
that share those properties.  In addition, the algorithm can 
take advantage of the large geographic separation between 
VLBA antennas to separate local RFI from distant sources.   

Figure 5 shows how the comparison of signals from more 
than one antenna can help discriminate against RFI using 
decision boundaries as defined in [6].  In this example, a 
quadratic function selects the interesting events, and rejects 
RFI, more effectively than other decision functions.   

 

Figure 5 – Multi-station transient detection methods 
(labeled curves; see [6]) and their ability to separate 

noise, RFI, and true transients.  The axes show signal 
strength from each of two widely separated antennas. 

 
Figure 6 is a more quantitative summary of the performance 
of the various functions used in Figure 5.   
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Figure 6 – Multi-station SNR detection limit for various 
false positive rates.  Lower is better.  Green and yellow 
lines show standard incoherent sum algorithms.  Red 

and black show V-FASTR approach used at VLBA [6].   

 
Figure 6 illustrates the sensitivity of various single-pulse 
detection approaches applied to a dataset of several hundred 
individual pulses from a radio pulsar (PSR 0329+54).  More 
lenient detection thresholds achieve a higher detection rate 
for true pulses at the expense of more false detections.  Fig 6 
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shows the signal to noise ratio of each pulse that can be 
detected with 90% certainty as a function of the number of 
false positive detections.  The 90% confidence intervals 
were generated using bootstrap sampling.  These results 
show that adaptive methods (lower red and black curves) 
perform significantly better.  These two adaptive approaches 
tune their sensitivity to each independent antenna on line, 
and thus are better able to ignore non-interesting noise and 
contaminant signals.   

Another, more general example of the power of machine 
learning techniques for signal detection is illustrated in 
Figure 7.  Here the vertical axis is the fraction of true events 
detected, and the horizontal axis is the number of false 
alarms generated.  An ideal detection system would occupy 
the upper left corner of this plot.  The semi-supervised 
matching learning algorithm is clearly more sensitive and 
more robust than other approaches. 
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Figure 7 – Adaptive algorithm (blue curve) significantly 
improves signal detection performance [6]. 

 
Data triage can apply to many other situations, including the 
detection of instrumental anomalies in monitor and control 
data or real-time control of sensor properties in response to 
rapidly varying conditions.  Intelligent algorithms are likely 
to be a major focus of future work in dealing with big data 
challenges.  

4. DATA ARCHIVING AND MINING 

The result of most big data problems is, not surprisingly, a 
very large quantity of data to store, access, distribute, and 
mine for various types of information and understanding.  
The traditional approach, in which users download selected 
data from a central archive to analyze on their computers, 
will not work when the size of data sets makes data transfer 
an unacceptably slow process.  Instead, analysis programs 
will have to run on computers closely linked to the archive 
storage infrastructure.  Consequently users will need to be 

able to run their analysis programs and script on remote 
computing resources.  This model raises several questions 
concerning security, robustness, and access.   

JPL has invested in a scalable archive system that addresses 
these concerns.  The Process Control System (PCS) was 
developed originally as an archive system for NASA’s 
planetary missions, but its underlying software components 
have turned out to be applicable to many other large archive 
needs including the Climate Data Exchange, the James 
Webb Space Telescope, and the Early (Cancer) Detection 
Research Network (ERDN) [7-10].  The Object Oriented 
Data Technology (OODT) on which PCS is built was 
developed primarily by D. Crichton.  It is scalable, hardware 
independent, database independent, and interoperable.  Most 
importantly, OODT has a plug-in capability for user data 
processing tools and algorithms.  OODT is the first NASA 
project to be distributed as open source software through the 
Apache Software Foundation.   

Figure 8 shows the basic architectural components of PCS, 
and how they interact.   

 
Figure 8 – The Process Control System is a set of 

reusable components from the open source Object 
Oriented Data Technology (OODT) framework [11]. 

 
Figure 9 shown an example PCS/OODT application based 
on a proposal to use this framework for an Expanded Very 
Large Array (EVLA) data pipeline and archive at the 
National Radio Astronomy Observatory.   

The EVLA collaboration will begin with a demonstration of 
Apache OODT based on the EVLA summer school pipeline.  
In this demonstration, the Workflow Manager (WM in Fig 
9) will ingest raw EVLA data via the File Manager (FM), 
dynamically create a script that runs standard EVLA data 
analysis programs to produce a set of radio images, and then 
stores the images and associated calibration and other meta-
data.  The stored results can be rapidly searched using meta-
data elements to produce new data files and meta-data. 
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Figure 9 – A possible use of PCS/OODT for a future 
radio astronomy archive.  EVLA is the Expanded Very 
Large Array in New Mexico, FM is the File Manager, 

and WM is the Workflow Manager. 

 
A major goal of PCS/OODT is to provide a framework for 
sharing data across heterogeneous and distributed archives.  
As understanding more complex data continues to demand a 
greater degree of data assimilation and visualization, and 
thus access to ever larger and more heterogeneous data sets, 
the capabilities of PCS/OODT will be more widely useful.  

5. DISCUSSION 

There are many aspects of big data problems that have not 
been discussed here.  These include data compression and 
encoding techniques, long-distance data transport, very high 
I/O bandwidths within digital systems, high performance 
computing in general, and massively parallel computing 
architectures in particular.  Each of these areas could be 
critical for a specific big data problem, but they have not 
been a focus of JPL’s internal research to date because they 
are being addressed, with significant resources, by industry 
(long-distance broadband data transport, high I/O bandwidth 
hardware, high performance and parallel computing), or are 
more application specific (data compression and encoding, 
particularly for downlink of data from distant spacecraft). 

Cloud computing is another area that often comes up in any 
discussion of difficult data processing problems.  While this 
is a rapidly growing approach to large computational issues 
or storage of data, the nature of most big data problems is 
that they are data rate (I/O) limited, not computation limited.  
In this situation the goal is to minimize the need to move 
data once it has been stored, and this in turn requires close 
coupling between the computational hardware used for data 
analysis and the data storage media.  We want to minimize 

the need to ever transfer very large data files to remote 
machines.  Such data transfers can consume large amounts 
of time, power, and network bandwidth.  Highly distributed 
computing and storage resources as epitomized by cloud 
computing may not be the optimal paradigm for the extreme 
I/O rates needed between computing resources and massive 
data archives.  

The work was initially motived by challenges facing the 
SKA, and the technology being developed is still directly 
relevant for this project.  Lower power data generation 
through careful consideration of data flow through ASICs 
has the potential to reduce one of the largest components of 
the SKA’s predicted annual operating cost, paying for the 
generation of electric power.  Power will be a significant 
operating expense independent of how it is generated.  

Data triage algorithms can be used to extract additional 
science prior to unavoidable data averaging, and also might 
be able to reduce the raw data flow from antenna by 
adjusting the number of bits per sample in real time based 
on observed changes in properties of RFI.  JPL has a long-
standing interest in techniques that allow more data, or more 
optimally selected data, to be transmitted to Earth from 
distant planetary spacecraft to the Deep Space Network.  
Machine learning algorithms complement data compression 
and error-correcting codes to maximize the science return 
from missions.  

Data triage algorithms may also be useful for detecting and 
characterizing anomalies in monitor and control data on 
faster time scales than monitor data is routinely logged.  
This is, in principle, related to the current practice of using 
machine learning techniques to classify variations in signals 
from astronomical objects (e.g., [12]).  

Finally, data scale of the SKA data archive will preclude the 
routine transfer of data to remote user for analysis.  It will 
thus be necessary for users to be able to run their software 
on computers located at the data archive site.  In addition, 
very efficient searching and mining of the SKA data archive 
will be needed to maximize the scientific value of the data 
through combined analysis with data from other facilities.  
The open source OODT software tools may provide a viable 
framework to meet these requirements. 

6. CONCLUSIONS 

The need to address big data challenges is now widely 
recognized.  One compelling reason in the world of radio 
astronomy is the SKA, which promises to produce data at 
rates and volumes orders of magnitude larger than existing 
facilities.  Technology developed in the context of the SKA 
bid data problems will have much wider application.  This 
extends to fields far beyond radio astronomy, including 
NASA and other agencies space missions, global and 
regional climate monitoring, biotech research, the financial 
industry, high energy physics experiments, all-sky optical 
monitoring programs (culminating in the Large Synoptic 
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Survey Telescope, whose continuous data rates will 
approach those of the SKA), telecommunications, and many 
others.   
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