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Introduction: A key science goal of the Europa
Clipper mission [1], which will make over 40 flybys of
Jupiter’s moon Europa starting in the late 2020s, is to
determine whether there any ongoing geologic processes
such as plumes that release material from Europa’s sub-
surface ocean. Studying fresh material from Europa’s
ocean can provide insights into its habitability both by
Europa Clipper and potential future surface missions.
To search for plumes, Europa Clipper will use its suite
of instruments, including the Europa Imaging System
(EIS) [2], which will look for direct visible evidence of
plumes above the limb of the body illuminated by sun-
light. Because the spacecraft will be so far from Earth,
downlink constraints will limit the number of images that
can be sent back to scientists, and the rate at which they
can be transmitted. The ability to automatically detect
plumes within images onboard the spacecraft could en-
able selective or reprioritized downlink so that the most
scientifically relevant observations arrive back on Earth
first to enable tactical planning of follow-up observations
during subsequent flybys. We are exploring algorithms
for automatic plume detection, which we describe here
along with results on labeled analogue images.

Analogue Data: Active plumes have previously been
observed on moons and other planetary bodies such as
comets. Moons such as Io and Enceladus are more rele-
vant to our study than highly non-spherical comet nuclei.
Therefore, we include observations of these bodies with a
number of different instruments: the Galileo Solid-State
Imager (SSI), the Cassini Imaging Science Subsystem
(ISS), and the New Horizons Long Range Reconnais-
sance Imager (LORRI). In addition to observations of
bodies with active plumes, we include observations of
Mercury by the MESSENGER spacecraft using the Mer-
cury Dual Imaging System (MDIS), which is similar to
EIS in design. Finally, we include observations of Europa

Table 1: The total number of images in our dataset of each body
observed by the instruments listed, followed in parentheses by
the number of images containing plumes.

Instrument Body Images (w/Plumes)

SSI

Io 19 (12)
Europa 22 (0)

Ganymede 13 (0)
Callisto 7 (0)

LORRI Io 84 (60)
MDIS Mercury 123 (0)
ISS Enceladus 40 (40)

Total: 308 (112)

Figure 1: An example showing la-
beled plumes (light blue shaded
regions) in the LORRI observa-
tion LOR_0035092817_0X630 of Io.
The limb and annulus boundary are
shown in red.

and other icy moons (Ganymede and Callisto) from SSI.
Table 1 summarizes the data that we used in our study.

To provide ground truth for any algorithm that at-
tempts to automatically detect plumes in the observations
described above, we manually annotated each image in
our dataset. Our annotations consist of both limb and
plume labels, as shown in Figure 1. The limb is specified
by a set of points in the image to which a circle is then fit.
After the limb of the body is fit, the presence of a plume
is indicated by labeling any portion of the annulus sur-
rounding the body in which a plume is visible. We have
made our labels available online,1 and all of the images
are available via the Planetary Data System (PDS).

Approach: To automatically detect plumes, we base
our approach on prior work for onboard plume detec-
tion [3]. Whereas prior work investigated plume detec-
tion for potentially non-spherical bodies such as comets,
we use a simplified algorithm for the imaging targets in
this data set, which are approximately spherical. The al-
gorithm begins by finding the high-contrast limb of the
body using a Canny edge detector [4]. Then, a circle is
fit to these edges to model the limb using Random Sam-
ple Consensus (RANSAC) [5], which ignores potential
spurious edges detected due to hot pixels, stars, or the ter-
minator. After the outline of the body is found, a plume
search is conducted by looking within a ring-shaped, an-
nular region surrounding the body from 101% to 120%
of the body’s estimated radius (see Figure 2, left).

The plume search begins by averaging the pixel in-
tensity, measured in raw digital numbers (DNs), within
each of 1024 radial "sectors" of the annulus. Any sector
not contained within the image (if part of the body falls
outside the field of view) is ignored. Statistics are then
computed using the pixel intensities of the remaining sec-
tors to search for outliers. We use the inter-quartile range
(IQR) as a robust measure of the typical variance due to
noise in the intensities across sectors. Then, we detect
plume candidates as those sectors with average intensity
values that fall above the median sector intensity plus a
multiple of the IQR. Thus, this approach uses an adaptive

1https://zenodo.org/record/2556063
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Figure 2: (left) An example limb and plume detection in obser-
vation N1635814521 of Enceladus by Cassini ISS. The detected
limb in shown in red, with the search annulus edge shown in
blue. Green indicates a region where a plume was detected.
(right) An example limb-finding failure in a high phase angle
observation (N1635781564) leading to false plume detections.
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Figure 3: Receiver Operating Characteristic (ROC) curves
comparing the performance of the adaptive- and fixed-threshold
algorithms across all images, with area under the curve (AUC)
shown in the legend. The plume detection results show perfor-
mance on a binary plume/no plume decision for each image,
whereas the plume localization results show performance on
making a separate decision for each visible annulus sector.

threshold based on the observed IQR of the data. As a
baseline, we also investigated a variant of this algorithm
that instead uses a fixed threshold on the average pixel
intensity within each sector.

Results: To evaluate the plume-finding algorithm,
we ran the adaptive and fixed threshold approaches on the
308 images in our dataset. Instead of selecting a single
threshold for each algorithm, we use receiver operating
characteristic (ROC) curves to study how classification
performance in terms of true positive rate (TPR) and
false positive rate (FPR) varies as the threshold sweeps
from high to low values, capturing fewer true positives
but also generating fewer false positive detections (see
Figure 3). We separately consider the problems of “plume
detection,” deciding whether an image contains a plume
or not, and “plume localization,” determining which of
the visible annulus sectors contain plumes.

As an initial observation, we see that both curves are
shifted down somewhat from the top of the graph (as

indicated by the gray shaded region), only rising to the
top-right corner near the end of the curve. For a perfect
classifier, ROC curves would rise as quickly as possible to
a TPR of 1.0, producing an area under the curve (AUC)
of 1.0. In this case, the reason for the downward shift
is due to the set of images for which the limb-finding
step fails, for which no plumes can be detected. The
limb-finding fails if RANSAC cannot find a solution, or
the solution it finds has a body radius that deviates by
more than 50% from the expected value (hypothetically
generated using telemetry predicts). Common causes of
failure include high phase angle observations (Figure 2,
right) and missing data that produces high-contrast re-
gions within the body. Plumes are only detected in these
cases if the threshold is at the lowest possible setting, so
plumes are always reported (TPR and FPR of 1.0).

The results also show that, as expected, the adaptive
approach significantly outperforms the fixed threshold.
Because DNs can vary significantly across images due to
difference in exposure times and instrument characteris-
tics, using a single fixed threshold produces AUCs that
are close to randomly guessing (0.5). The adaptive ap-
proach performs better at the localization task than at the
detection task. This behavior is likely due to the fact that
a single spurious plume detection leads to an incorrect
classification for an entire image, so a higher TPR is only
achieved at the expense of a higher FPR. Nonetheless, the
AUC values indicate that the algorithm has a 77% chance
of assigning a higher plume detection score to an image
with a plume than to one without, so it can effectively
prioritize images for downlink better than chance.

Conclusions: We have demonstrated an effective ap-
proach for detecting plumes within analogues of the im-
ages to be acquired with the EIS instrument onboard Eu-
ropa Clipper. The algorithm is designed to run onboard
the spacecraft to prioritize downlink, but it can also be
deployed as part of ground processing to prioritize scien-
tists’ focus of attention as soon as data reaches Earth. We
are currently investigating similar approaches to detect
anomalies or interesting phenomena within other Europa
Clipper instruments [6, 7].
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