# Unfit for intended use: Detecting emergent bias in machine learning systems

## Kiri L. Wagstaff

Special Advisor on Artificial Intelligence

Oregon State University Libraries

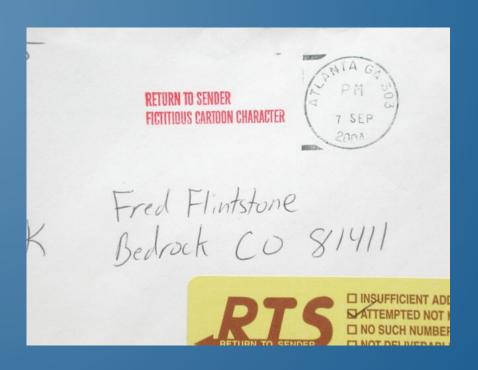
Linköping University, Sweden – September 11, 2025









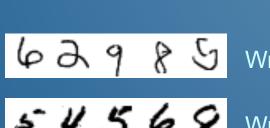

# > Topics for today

- 1. What is emergent bias for machine learning systems?
- 2. When does emergent bias happen?
- 3. How can we detect it before using/deploying the ML model?

Kiri L. Wagstaff

# Goal: Recognize handwritten numbers

- Examples
  - U.S. ZIP Codes on postal mail
  - Phone numbers
  - Handwritten check amounts
  - Time of day on a handwritten note
  - Dosage on a medical prescription
  - (Etc.)




# Multi-Digit Writer (MDW) U.S. ZIP Codes

Synthetic handwritten multi-digit numbers written by a single writer

 Assembled from MNIST digits (LeCun et al., 1998)









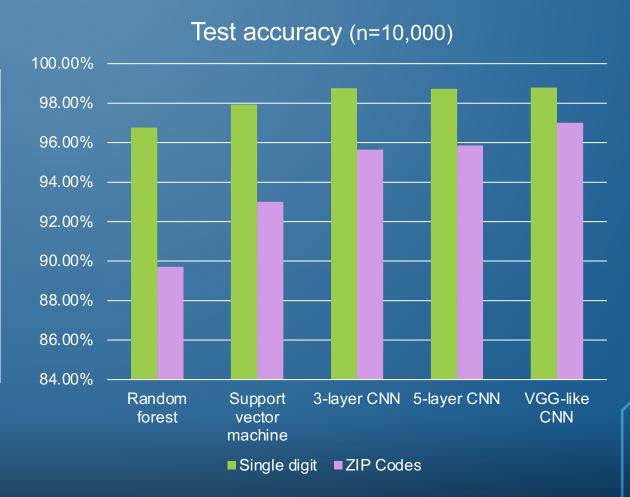
Writer 480



Writer 3856

Writer 2389

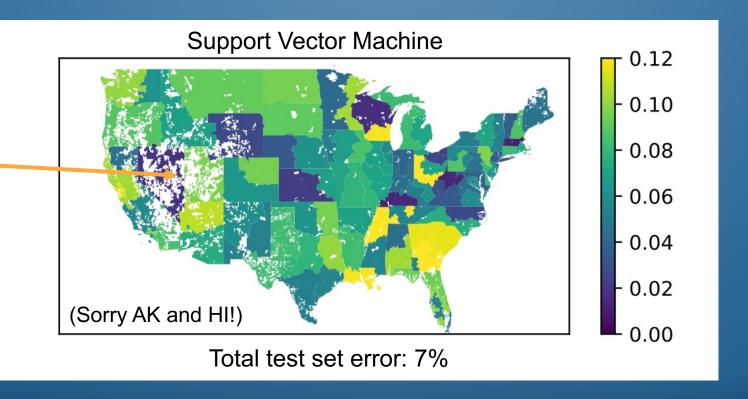
- Limitations: artificially regular spacing, doesn't capture sequential writing behaviors, each digit is only 28x28 pixels
  - Prefer to collect new (sequential) handwriting samples if resources permit


Kiri L. Wagstaff

Yann LeCun

# Which ZIP Code model do you prefer?

Recognizing 5-digit ZIP Codes is harder than single digits

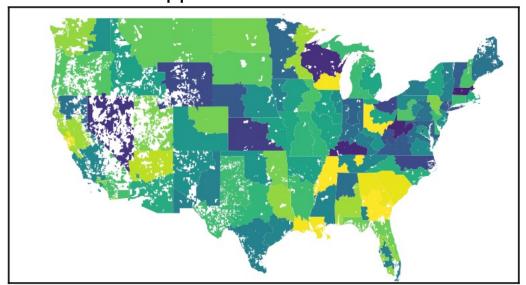

|                                            | Single digit                   | 5 digits                                     |
|--------------------------------------------|--------------------------------|----------------------------------------------|
| Classifier<br>(n=60,000 training<br>items) | MNIST test accuracy (n=10,000) | MDW ZIP Codes<br>test accuracy<br>(n=10,000) |
| Random forest                              | 96.77%                         | 89.71%                                       |
| Support vector machine                     | 97.93%                         | 93.00%                                       |
| 3-layer CNN                                | 98.75%                         | 95.64%                                       |
| 5-layer CNN                                | 98.73%                         | 95.85%                                       |
| VGG-like CNN                               | 98.79%                         | 97.01%                                       |



# Error is not equally distributed (geographical bias)

- Error rates (lower is better) per U.S. ZIP Code sector
  - Sector: all ZIP Codes with the same first two digits (e.g., 00XXX, 01XXX...)

Some places do not belong to a ZIP Code!




Emergent bias: performance differs by location (Bias = differential performance for sub-groups)

# Which ZIP Code model do you prefer?

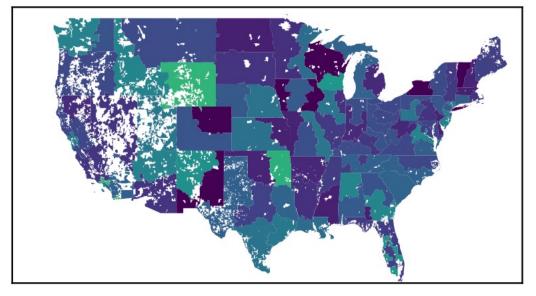
- VGG-like CNN has lower total error
  - But its emergent bias penalizes different areas than the SVM

#### **Support Vector Machine**



Total test set error: 7%

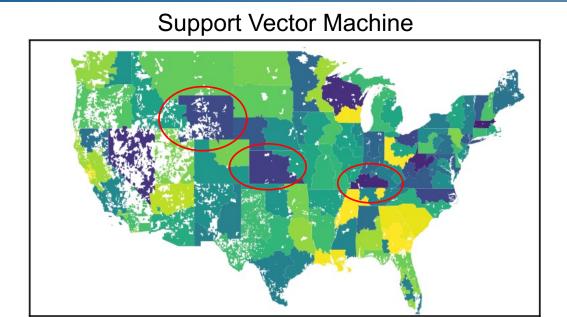
#### VGG-like Convolutional Neural Network

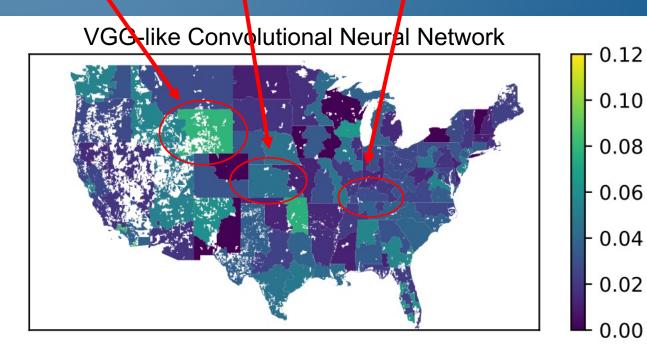

0.12

0.10

0.08

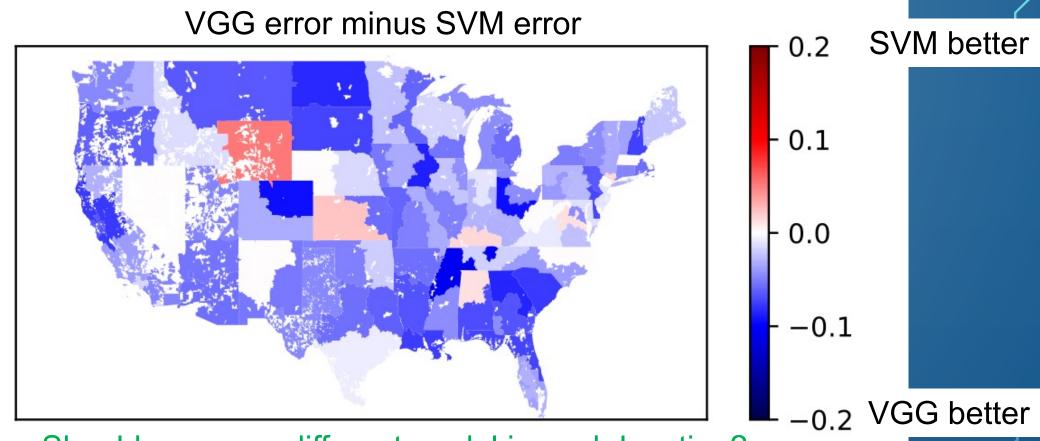
0.06


0.04




Total test set error: 3%

Different emergent bias in each model


# ™ What if you live in Wyoming, Kansas, or Kentucky?





Different emergent bias in each model

## ് Comparative geographical bias VGG and SVM models ○



Should we use a different model in each location?

We need to evaluate emergent bias carefully to inform deployment decisions

# What is emergent bias?

- Emergent bias: Bias that manifests (only) when applying a system in contexts not originally envisioned
  - Geographical bias is not in the training data
  - Geographical bias is not even defined for isolated digit classifiers
- "While it is almost always possible to identify preexisting bias and technical bias in a system design at the time of creation or implementation, emergent bias arises only in a context of use."

(Friedman & Nissenbaum, 1996)





# Is the model unfit for intended use?

• What went wrong?

Digits





Generic model trained to recognize digits



**Predictions** 

2 3 8

**ZIP** Code digits



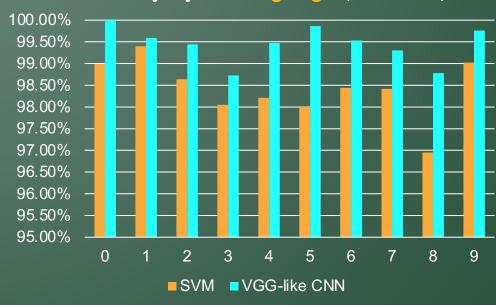


ZIP Code predictions 90210

62989



## More examples


- MDW handwritten check amounts: \$0.00 to \$99,999
  - The position of each digit matters

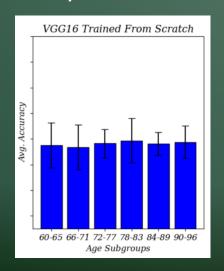
## Accuracy by amount (n=10,000)

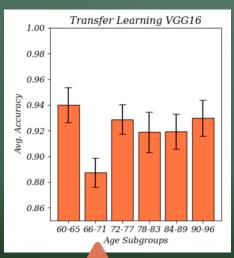


Longer numbers are harder for both models (not surprising, but not what you want)

### Accuracy by leading digit (n=10,000)




SVM has a weakness for amounts starting with \$8 (surprising!)


# Other causes of emergent bias

- Domain shift: Changes over time and/or space
- Transfer learning
  - Alzheimer's disease diagnosis from brain scan images (Salmani & Lewis, 2024)
  - VGG16 model trained on ImageNet and fine-tuned for brain scans exhibits 3x more bias (gender) and 5x more bias (age) compared to VGG16 model trained from scratch









Avg. performance for fine-tuned VGG16 is higher (92.3% vs. 91.7%), but it exhibits emergent bias

# Detecting emergent bias before deployment

- The generic MNIST test set cannot reveal this bias to you
  - "emergent bias arises only in a context of use." (Friedman & Nissenbaum, 1996)
- Do not rely on generic metrics (accuracy, AUC, F1, etc.) to do model selection
- Ask: What performance metric do you actually care about?
  - Error rate across the entire sample
  - Error rate per region
  - Error rate for urban vs. rural
  - Error rate per region, weighted by population
  - Error rate per region, weighted by postal activity

What are the sub-groups of interest?

Kiri L. Waastaff

# What can you do to reduce emergent bias?

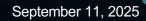
- Collect more data for sub-groups with lower performance and re-train
- Selectively deploy best classifier for each sub-group
  - But this means you are making decisions based on fewer examples per sub-group, so proceed with caution, especially for minority sub-groups

# Emergent bias in machine learning systems

- Emergent bias: appears in a specific context of use
  - It is not measurable (or defined) in the generic context
  - Not a good surprise to get after deployment!

- 0.12 - 0.10 - 0.08 - 0.06 - 0.04 - 0.02 0.00
- Do not rely on abstract performance metrics for model selection
  - Choose and inspect domain-specific performance metrics
  - Compare performance between sub-groups of interest
- Consider selective use of models that work well for each sub-group

Thank you!


Contact: wkiri@wkiri.com









