
CS 461: Machine Learning Lecture 2

Dr. Kiri Wagstaff wkiri@wkiri.com

Today's Topics

- Review and Reading Questions
- Homework 1
- Data Representation (Features)
- Decision Trees
- Evaluation
- Weka

Review

- Machine Learning
 - Computers learn from their past experience
- Inductive Learning
 - Generalize to new data
- Supervised Learning
 - Training data: $\langle x, g(x) \rangle$ pairs
 - Known label or output value for training data
 - Classification and regression
- Instance-Based Learning
 - 1-Nearest Neighbor
 - k-Nearest Neighbors

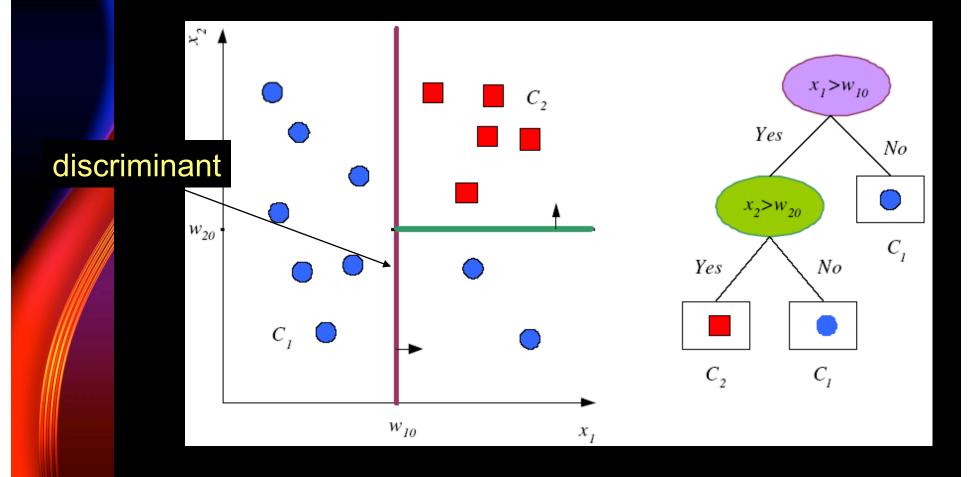
Reading Questions

- Introduction / Machine Learning (Ch. 1)
 - Classification: What is a discriminant?
 - Regression: to train an autonomous car to predict what angle to turn the steering wheel, where could the training data come from?
- Supervised Learning (Ch. 2.1, 2.4-2.9)
 - Is the most specific hypothesis S a member of the version space? Why or why not?
 - What happens if the true concept C is not in the version space?
 - What is Occam's Razor?

Homework 1

Solution/Discussion

Data Representation: Which Features?


Decision Trees

Chapter 9

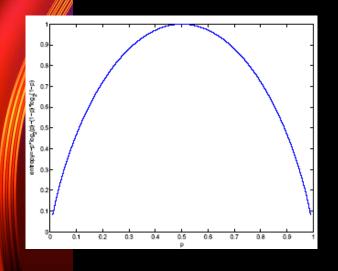
Decision Trees

- Parametric method
- PredictionWorks
 - "Increasing customer loyalty through targeted marketing"
- Decision Tree Interactive Demo

(Hyper-)Rectangles == Decision Tree

Measuring Impurity

$$\hat{P}(C_i \mid \mathbf{x}, m) = p_m^i = \frac{N_m^i}{N_m}$$


1. Impurity = error using majority label $I_m = 1 - \max_i(p_m^i)$

$$I_m = 1 - \max_i(p_m^i)$$

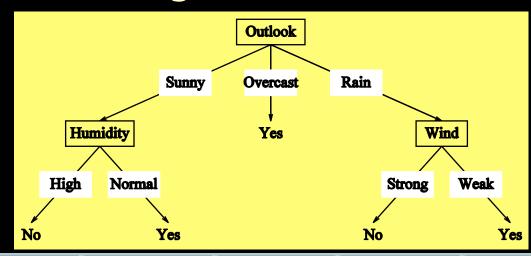
After a split

$$I'_{m} = \sum_{j=1}^{n} \frac{N_{mj}}{N_{m}} 1 - \max_{i} (p_{mj}^{i})$$

- More sensitive: use entropy
 - For node m, N_m instances reach m, N_m^i belong to C_i

- Node m is pure if p_m^j is 0 or 1

Entropy:
$$I_m = -\sum_{i=1}^K p_m^i \log_2 p_m^i$$


After a split:
$$I'_{m} = -\sum_{j=1}^{n} \frac{N_{mj}}{N_{m}} \sum_{i=1}^{K} p_{mj}^{i} \log_{2} p_{mj}^{i}$$

Should we play tennis?

Outlook	Temperature	Humidity	Wind	PlayTennis	
Training Sets					
Sunny	Hot	High	Weak	No	
Sunny	Hot	High	Strong	No	
Overcast	Hot	High	Weak	Yes	
Rain	Mild	High	Weak	Yes	
Rain	Cool	Normal	Weak	Yes	
Rain	Cool	Normal	Strong	No	
Overcast	Cool	Normal	Strong	Yes	
Sunny	Mild	High	Weak	No	
Sunny	Cool	Normal	Weak	Yes	
Rain	Mild	Normal	Weak	Yes	
Sunny	Mild	Normal	Strong	Yes	
Overcast	Mild	High	Strong	Yes	
Overcast	Hot	Normal	Weak	Yes	
Rain	Mild	High	Strong	No	

1/17/09 CS 461, Winter 2009 [Tom Mitchell] 11

How well does it generalize?

Outlook	Temperature	Humidity	Wind	PlayTennis	
Testing Examples					
Sunny	Mild	Normal	Weak	Yes	
Overcast	Hot	High	Strong	Yes	
Sunny	Mild	High	Strong	No	
Rain	Hot	High	Weak	Yes	
Rain	Mild	Normal	Weak	Yes	
Sunny	Mild	High	Strong	Yes	

Decision Tree Construction Algorithm

```
GenerateTree(\mathcal{X})
     If NodeEntropy(\mathcal{X})<\theta_I /* eq. 9.3
         Create leaf labelled by majority class in \mathcal{X}
          Return
     i \leftarrow \mathsf{SplitAttribute}(\mathcal{X})
      For each branch of x_i
         Find \mathcal{X}_i falling in branch
         GenerateTree(\mathcal{X}_i)
SplitAttribute(X)
     MinEnt← MAX
      For all attributes i = 1, \ldots, d
            If x_i is discrete with n values
               Split \mathcal{X} into \mathcal{X}_1, \dots, \mathcal{X}_n by \boldsymbol{x}_i
               e \leftarrow \mathsf{SplitEntropy}(\mathcal{X}_1, \dots, \mathcal{X}_n) / * eq. 9.8 * /
               If e < MinEnt MinEnt \leftarrow e; bestf \leftarrow i
            Else /* \boldsymbol{x}_i is numeric */
                For all possible splits
                      Split \mathcal{X} into \mathcal{X}_1, \mathcal{X}_2 on \boldsymbol{x}_i
                      e \leftarrow SplitEntropy(\mathcal{X}_1, \mathcal{X}_2)
                      If e < MinEnt MinEnt \leftarrow e; bestf \leftarrow i
      Return bestf
```

Evaluating a Single Algorithm

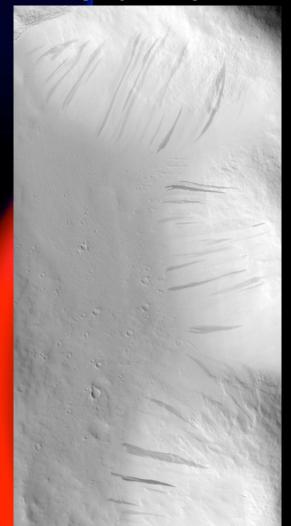
Chapter 14

Measuring Error

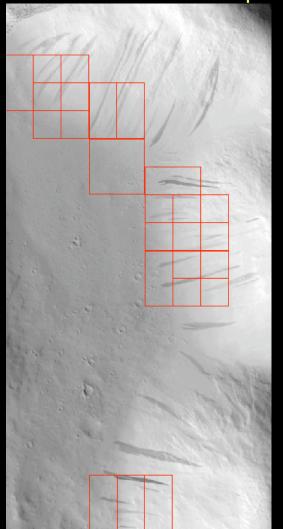
	Predicted class		
True Class	Yes	No	
Yes	TP: True Positive	FN: False Negative	
No	FP: False Positive	TN: True Negative	

Breast Cancer

	Survived	Died
Survived	9	3
Died	4	4


Iris

	Setosa	Versicolor	Virginica
Setosa	10	0	0
Versicolor	0	10	0
Virginica	0	1	9


15

Example: Finding Dark Slope Streaks on Mars

Marte Vallis, HiRISE on MRO

Output of statistical landmark detector: top 10%

Results

TP: 13

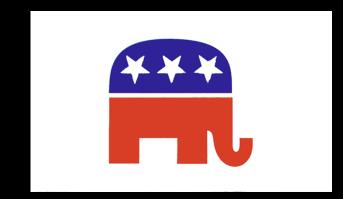
FP: 1

FN: 16

Recall = 13/29 = 45%

Precision = 13/14 = 93%

Evaluation Methodology


- Metrics: What will you measure?
 - Accuracy / error rate
 - TP/FP, recall, precision...
- What train and test sets?
 - Cross-validation
 - LOOCV
- What baselines (or competing methods)?
- Are the results significant?

Baselines

- Simple rule
- "Straw man"
- If you can't beat this... don't bother!
- Imagine:

VS.

Weka Machine Learning Library

Weka Explorer's Guide

Homework 2

Summary: What You Should Know

- Supervised Learning
 - Representation: features available
- Decision Trees
 - Hierarchical, non-parametric, greedy
 - Nodes: test a feature value
 - Leaves: classify items (or predict values)
 - Minimize impurity (%error or entropy)
- Evaluation
 - (10-fold) Cross-Validation
 - Confusion Matrix

Next Time

- Reading:
 - Decision Trees (read Ch. 9.1-9.4)
 - Evaluation (read Ch. 14.1-14.4)
 - Weka Manual (read p. 25-27, 33-35, 39-42, 48-49)
- Questions to answer from the reading:
 - Posted on the website (calendar)
 - Three volunteers: Lewis, Natalia, and T.K.