
Clustering with Instance-level Constraints

Kiri Wagstaff wkiri@cs.cornell.edu

Claire Cardie cardie@cs.cornell.edu

Department of Computer Science, Cornell University, Ithaca, NY 14853 USA

Proceedings of the Seventeenth International Conference on Machine Learning, 2000, p. 1103–1110.

Abstract

Clustering algorithms conduct a search
through the space of possible organizations
of a data set. In this paper, we propose two
types of instance-level clustering constraints
– must-link and cannot-link constraints – and
show how they can be incorporated into a
clustering algorithm to aid that search. For
three of the four data sets tested, our re-
sults indicate that the incorporation of sur-
prisingly few such constraints can increase
clustering accuracy while decreasing runtime.
We also investigate the relative effects of each
type of constraint and find that the type that
contributes most to accuracy improvements
depends on the behavior of the clustering al-
gorithm without constraints.

1. Introduction

Clustering algorithms seek to discover underlying pat-
terns in a data set automatically. To this end, they
conduct a search through the space of possible organi-
zations of the data, preferring those that group similar
instances together and keep dissimilar instances apart
(Cheeseman et al., 1988; Fisher, 1987; Gray, 1984).
Normally this search proceeds in an entirely unsuper-
vised manner. For some domains, however, constraints
on which instances can or cannot reside in the same
cluster either are known or are computable automati-
cally from background knowledge. Research on protein
function prediction, for example, relies on data sets
where class labels for a small subset of the instances
are already known (e.g., the SWISS-PROT protein
database (Bairoch & Boeckman, 1992)). While not
enough class labels may be available to apply super-
vised learning methods, a clustering approach to the
problem could use this incomplete class information to
constrain the placement of instances into the appropri-
ate “protein function” cluster. Similarly, in a cluster-
ing approach to the problem of noun phrase corefer-

ence (Cardie & Wagstaff, 1999), background linguistic
knowledge can be used to compute instance-level con-
straints indicating that certain pairs of noun phrases
either must be, or cannot be in the same coreference
cluster.

While others have investigated the use of background
knowledge to improve clustering (Talavera & Béjar,
1999; Thompson & Langley, 1992), little research has
investigated the use of instance-level hard constraints.
This paper proposes and evaluates two such types of
instance-level clustering restrictions – must-link and
cannot-link constraints. We first show that an existing
clustering algorithm can be modified to enforce these
constraints. We then show that the incorporation of
surprisingly few randomly generated constraints can
both increase lustering accuracy and decrease runtime.
For three out of four data sets tested, statistically
significant improvements in clustering accuracy ap-
pear after only five-20 constraints have been employed.
Overall, we observe improvements of up to 11% after
incorporating 50 randomly selected constraints, and
up to 17% with 100 constraints. We also show that
the type of constraint that is most effective can vary
between data sets; greater increases can be obtained,
for example, by using only must-link or only cannot-
link constraints. Based on the initial results of this
exploratory study, we conclude that the incorporation
of instance-level hard constraints can offer substantial
benefits for clustering tasks.

The next section describes the two types of clustering
constraints that are the focus of our investigation and
shows how to incorporate them into a well-known clus-
tering algorithm. Sections 3 and 4 describe the data
sets used in our study and explain the “clustering accu-
racy” evaluation metric. In Section 5, we investigate
the use of both types of constraints for the selected
data sets. Section 6 compares our approach and re-
sults to previous work that uses background knowledge
to improve clustering. Problems with the proposed
approach, directions for future work, and conclusions
appear in Section 7.

2. Incorporating Constraints in
Clustering Algorithms

As noted above, clustering algorithms conduct a search
through the space of possible organizations of the data
– a search space that can be prohibitively large. As
noted by Beck and Fox (1998), constraints are im-
portant in search algorithms because they narrow the
space of possible solutions and provide a direction for
the search through that space. They note furthermore
that constraints can be incorporated directly into the
search operators and thereby used to guide the search
itself. Here we apply the notion of search constraints
to clustering tasks. We observe that constraints can
be incorporated into clustering algorithms by making
appropriate modifications to the search operators to
ensure that the constraints are satisfied.

In the remainder of this section, we first propose two
types of constraints for clustering (Section 2.1). We
then discuss the use of these constraints in both par-
titioning and hierarchical clustering algorithms (Sec-
tion 2.2). Finally, we show how the constraints can be
incorporated into a well-known clustering algorithm
(Section 2.3).

2.1 Constraints

For constraints to be of most use, they should reflect
the goals of the clustering task. In general, there are
at least two possible task models. In the first case, the
goal is to use the result of the clustering algorithm to
classify new instances. Thompson and Langley (1992),
for example, compare the classification performance
of three incremental clustering algorithms in this way.
They first use each algorithm to create a hierarchical
clustering of a set of training instances. They then
use the resulting hierarchy to sort each test instance
into an appropriate cluster and classify it according
to the majority class value of other instances in the
cluster. An alternative model is to use clustering to
infer a partition of the data that reflects its inherent
class structure, i.e. to create one cluster per class. Ta-
lavera and Béjar (1999), for example, use this model
to place instances from the mushroom UCI (Blake &
Merz, 1998) data set into either a “poisonous” or an
“edible” cluster. We focus here on the latter model
and propose the use of constraints that express infor-
mation about the underlying class structure, thereby
enabling the algorithm to make more accurate choices
about how to cluster instances. More specifically, we
investigate two general kinds of constraints: must-link
and cannot-link constraints. Both are considered hard
constraints that must be satisfied. Their definitions
are straightforward:

• Must-link constraints specify that two instances
have to be in the same cluster.

• Cannot-link constraints specify that two instances
cannot be in the same cluster.

We next motivate our selection of a clustering algo-
rithm and show that it can be modified in simple ways
to incorporate such constraints.

2.2 Partitioning vs. Hierarchical Clustering

In this initial study, we restrict our attention to clus-
tering algorithms that construct a flat partition of the
input (Cheeseman et al., 1988; Gray, 1984) rather than
a hierarchy of clusters (Fisher, 1987; McKusick & Lan-
gley, 1991). There are two primary reasons for this
restriction. First, it is difficult to evaluate a hierarchi-
cal clustering with respect to class membership assign-
ment. Each level of a hierarchy partitions the input
into a different set of clusters. Therefore, in order to
evaluate membership assignments, one must somehow
select a single level for evaluation (Fisher, 1996). In
contrast, partitioning algorithms permit an immediate
evaluation of clustering accuracy. (This will become
clearer in Section 3, which presents the clustering ac-
curacy measure used throughout the experiments.)

The nature of the constraints themselves provides a
second reason to focus initially on partitioning algo-
rithms: hierarchical clustering algorithms do not sup-
port a straightforward interpretation of must-link and
cannot-link constraints. A cannot-link constraint be-
tween two instances, for example, could mean that
they cannot be in the same node, or cannot have the
same parent node, or that they cannot be within some
prespecified “distance” of each other in the hierarchy,
etc. A similar ambiguity occurs with must-link con-
straints. The difficulty of incorporating instance-level
hard constraints within hierarchical clustering algo-
rithms is a possible disadvantage of our current ap-
proach. It will be discussed again in Section 7, but
relegated to future work.

2.3 The Clustering Algorithm

The clustering algorithm in all experiments that follow
is a version of COBWEB (Fisher, 1987) that produces
a partition of the input rather than a hierarchy. This
choice of algorithm is admittedly arbitrary – we might
have selected any of a number of classical partitioning
algorithms (e.g., EM (Dempster et al., 1977), k-means
clustering (Gray, 1984)). Future work will investigate
the incorporation of constraints into these clustering
algorithm alternatives. COBWEB is an incremental
clustering algorithm that employs the concept of cat-

Table 1. COP-COBWEB Algorithm

cop-cobweb(data set D, must-link constraints Con= ⊆ D ×D, cannot-link constraints Con6= ⊆ D ×D)

1. Let P be the set of clusters, initially {}.

2. For each instance Di in D, consider all ways to incorporate Di:

(a) Must-link check: If there exists some (Di, Dj) ∈ Con= such that Dj is already in an existing cluster C ∈ P ,
then let the new partition Pmust−link = (P − C)

⋃
{C
⋃
{Di}} and skip to step (e).

(b) Add: For each existing cluster Cj in P , let the new partition Padd−j = (P −Cj)
⋃
{Cj

⋃
{Di}} unless, for some

Dk ∈ Cj , (Di, Dk) ∈ Con6=.

(c) New: Let Pnew = P
⋃
{C} where C = {Di} is a new cluster.

(d) Merge: Let Cmax1 and Cmax2 be the two best hosts for Di from step (b) as determined by the CU values of
their resulting partitions. Let Pmerge = ((P − Cmax1) − Cmax2)

⋃
{Cmax1

⋃
Cmax2

⋃
{Di}} unless, for some

Dk1 ∈ Cmax1 and Dk2 ∈ Cmax2, (Dk1, Dk2) ∈ Con6=.

(e) Split: Let Cmax be the best host for Di from step (a) or (b) as determined by the CU values. Let Psplit =
(P − Cmax)

⋃
cop-cobweb(Cmax

⋃
{Di}, Con=, Con6=).

(f) Let m = argmax CU(Pk) for k ∈ {must−link, add−j, new,merge, split}. Update P = Pm.

3. Return P .

egory utility1 (CU) (Gluck & Corter, 1985) to create
a clustering that maximizes inter-cluster dissimilarity
and intra-cluster similarity. COBWEB considers four
primary operators (add, new, merge, and split) that
represent the possible ways to incorporate a new in-
stance into the top level of the existing hierarchy. It
applies each operator and selects the one that max-
imizes the category utility of the resulting hierarchy.
COBWEB continues recursively by applying the same
operators to that cluster’s children to properly sort
the new instance with respect to deeper levels, halting
when the instance is placed in a leaf node.

Our modified algorithm, in the absence of constraints,
produces output that corresponds to the top level
of the hierarchy produced by COBWEB. Pseudocode
for this partitioning algorithm, which we will refer to
as COP-COBWEB (for “constraint-partitioning”), is
presented in Table 1. The algorithm takes a data set,
D; a set of must-link constraints, Con=; and a set of
cannot-link constraints, Con 6=. It returns a partition
of the instances in D that enforces all specified con-
straints.2

For each instance Di in the data set, we first check for
1The category utility of a partition is measured by

the following equation: ((
∑K

k=1
P (Ck)

∑
i

∑
j
P (Ai =

Vij |Ck)2) − (
∑

i

∑
j
P (Ai = Vij)

2)) / K where K is the

number of categories or classes, Ck is a particular class, Ai
refers to one of the I attributes, and Vij is one of the J
values for attribute Ai.

2For clarity, we here assume that the must-link and
cannot-link sets are internally and mutually consistent. In
actuality our implementation performs consistency checks.

any must-link constraints (step 2a). If there is some
must-link constraint that indicates that Di must be
in the same cluster as Dj , and Dj has already been
incorporated into the partition, we enforce the con-
straint by including Di in the cluster C that contains
Dj . If not, we consider applying each of the add, new,
and merge operators to determine where to place Di.

When considering adding an instance to an existing
cluster Cj (step 2b), we check for the existence of any
cannot-link constraints that would prevent Di from
joining Cj . Next, we consider creating a new singleton
cluster for Di (step 2c). When considering merging
two clusters (step 2d), we once again must check for
any cannot-link constraints that would invalidate the
merge. Whether or not there was a must-link con-
straint found in step 2a, we consider an application of
the split operator (step 2e), which recurses on the sub-
set of the instances contained in the best host cluster
for Di. Lastly, the choice which results in the highest
CU is selected as the new partition P (step 2f).

3. Evaluation of Clustering Accuracy

The evaluation of clustering algorithms is always a
challenge. When the goal is to use the clustering al-
gorithm as a classifier, performance is commonly mea-
sured by evaluating the classifier’s decisions on a test
set that is separate from the training set (e.g., Thomp-
son & Langley, 1992). Majority vote is another com-
mon method of evaluation. Each cluster is tagged with
the class label that most commonly occurs among its
members, and any instances in the cluster that have
different class labels are considered errors (e.g., Ta-

lavera & Béjar, 1999). Although the latter method is
consistent with our clustering goals as described above
(Section 2.1), it permits 100% accuracy trivially when
each instance is placed into its own cluster. This met-
ric is concerned only with cluster “purity” and not
with how closely the partition matches the true class
composition of the data as indicated by the class labels
accessed for evaluation.

As a result, our experiments use a different evalua-
tion metric altogether. In particular, our goal is to
construct a partition that correctly identifies the un-
derlying classes in the given data, creating one cluster
for each class. It is possible to view a partition as a re-
lation on the instances: for each pair of instances, they
are either in the same cluster or in different clusters.
For a data set with n instances, there are n(n− 1)/2
unique pairs of instances, and thus there are n(n−1)/2
pairwise decisions reflected in any partition. As a re-
sult, we evaluate a partition w.r.t. the correct partition
using the following definition:

accuracy =
correct decisions

total # decisions
=

correct decisions

n(n− 1)/2

Each constraint added will increase accuracy by at
least one correct decision and possibly by more via
transitivity. To ensure that improvements in perfor-
mance are due to a learning effect (and not just a re-
duction in possible errors), our experimental method-
ology (described in Section 5) measures accuracy only
across pairs of instances not affected either directly or
transitively by the added constraints.

4. Data Sets

To test the effect of incorporating constraints, we sel-
ected three data sets from the UCI repository (soybean,
mushroom, and tictactoe) and a fourth “real-world”
data set, pos.

• soybean refers to the soybean-small data set, which
consists of 47 instances with 34 nominal attributes and
has instances from each of four classes. The goal is to
label instances describing soybean plants according to
the disease they have.

• mushroom contains 50 randomly selected instances
from the full data set (8124 instances). This data set
was created to be comparable in size to soybean. In-
stances have 21 nominal attributes and are labeled as
either poisonous or edible.

• tictactoe is also a randomly selected subset of a larger
data set (958 instances) but is twice the size of the
other two data sets. It has 100 instances with nine
nominal attributes. The goal is to determine whether

the final board configuration is a winning one for the
X player.

• pos contains 50 instances randomly selected from a
larger data set (2056 instances). Each instance rep-
resents an English word and its context in running
text and is described by 28 nominal attributes. The
goal is to label each instance with its proper part of
speech. Three classes (modifier, noun, and verb) are
represented.

5. Results

In this section, we examine the effects on clustering
accuracy of incorporating constraints for each of the
four data sets (Section 5.1) and analyze how behav-
ior differs depending on the type of constraints used
(Section 5.2). In addition, we present runtime results
(Section 5.3). All results were obtained using ten-fold
cross-validation. In particular, we randomly generate
constraints based on 90% of the data in each run and
evaluate accuracy only on the decisions that involve
the remaining 10%. To minimize instance ordering ef-
fects (Fisher et al., 1992), we conduct 50 trials per
fold, each of which uses a random ordering of the in-
stances and a random selection of constraints. Each
constraint is generated by randomly selecting a pair of
instances and checking their class labels. If they have
the same class label, a must-link constraint is gener-
ated; otherwise, a cannot-link constraint is generated.3

Each data set was evaluated with a varying number of
constraints, from five to 100.

5.1 Accuracy Improvements

soybean has 47 instances, yielding a total of 903 pair-
wise relationships that can be used for each fold as
must-link and cannot-link constraints. The results for
the soybean data set are depicted in the Mixed line
of Figure 1, which clearly shows a marked increase
in clustering accuracy as constraints are added. The
Must and Cannot lines will be discussed in the next
section.

More specifically, the partition with no constraints has
an average accuracy of 84.9%. Statistically signifi-
cant improvements appear after ten (of the 903 pos-
sible) constraints have been incorporated.4 Accuracy

3Note that we do not ensure that these constraints are
a minimal set, i.e. some of them may be transitively im-
plied by other constraints, so it is possible that some of the
constraints are redundant.

4All statements of statistical significance are at or above
the 99% confidence level (p ≤ 0.01) using a χ2 significance
test.

Figure 1. Improvements in accuracy for soybean

reaches 95.7% after 100 constraints have been incor-
porated, with no sign of leveling off. This represents
an improvement of 10.8% over the baseline.

Figure 2. Improvements in accuracy for mushroom

For the mushroom data set (Figure 2), the partition
produced using no constraints has an average accuracy
of 66.6%. We observe a significant improvement in
accuracy after incorporating 20 (of the 990 possible)
constraints, and accuracy reaches 83.4% after using
100 constraints (an improvement of 16.8% over the
baseline). For the pos data set (Figure 3), the partition
produced without constraints has an average accuracy
of 55.5%. Here a statistically significant improvement
occurs after including just five (of the 990 possible)
constraints. Accuracy is at 72.1% after 100 constraints
have been incorporated, yielding an increase of 16.6%
over the baseline.

For tictactoe (Figure 4), we observe some minimal im-
provements in accuracy. Some, but not all, results are
statistically significant. However, this data set does

Figure 3. Improvements in accuracy for pos

Figure 4. Improvements in accuracy for tictactoe. Larger
numbers of constraints are explored since it is a larger data
set.

not reflect the learning benefits that the others do. We
hypothesize that this is an indication that the tictac-
toe data set is not suited to our one-class/one-cluster
approach: the class composition is sufficiently com-
plex that the partitioning enforced by our instance-
level constraints obscures the rich substructure relied
on by COBWEB when incorporating new instances.
For this reason, we are also interested in applying these
techniques to hierarchical algorithms.

Clearly some constraints will be of more use than oth-
ers: if the algorithm is able to deduce a relationship
automatically from the data, then providing the cor-
responding constraint will only be redundant and not
actually improve performance. However, our results on
three of the four data sets indicate that even randomly
selected constraints can be useful, thus suggesting that
an intelligent selection of useful constraints could be
of even more benefit.

Figure 5. Overall partitions in the absence of constraints. In b and c, the letters refer to classes; the numbers refer to the
number of instances assigned to the class.

5.2 Must-link and Cannot-link Constraints in
Isolation

In a second set of experiments, we investigated the con-
tribution of each kind of constraint in isolation. Our
results indicate that neither constraint is inherently
more powerful than the other. Which type of con-
straint contributes most to accuracy improvements de-
pends on the composition of the baseline partition with
no constraints. Consider first the Must and Cannot
lines for the soybean data set in Figure 1. The must-
link constraints alone have less effect on accuracy than
the cannot-link constraints because, in the absence of
constraints, COP-COBWEB is able to correctly sepa-
rate classes 1 and 2, but groups classes 3 and 4 together
(see Figure 5(a)). Cannot-link rather than must-link
constraints are most responsible for separating those
classes. However, the cannot-link constraints in isola-
tion perform less well than the Mixed subset because
they encourage COP-COBWEB to create too many
clusters.

For the mushroom data set, the no-constraints par-
tition improperly separates poisonous (p) and edible
(e) instances (Figure 5(b)). In contrast to soybean,
however, the must-link constraints in isolation actu-
ally outperform the Mixed subset. In addition, the
cannot-link constraints work extremely poorly; they
consistently perform worse than the system with no
constraints. An examination of COP-COBWEB’s out-
put indicates that the cannot-link constraints again
cause the creation of too many clusters. However, as
additional cannot-link constraints are added – beyond
the 100 constraints shown in Figure 2 – the cannot-link
system begins to outperform the no-constraints base-
line although it never approaches the performance of
the Must or Mixed sets.

Finally, the pos data set demonstrates behavior simi-
lar to that of the mushroom data set: once again the
partition obtained in the absence of constraints (Fig-
ure 5(c)) has the correct number of clusters but an

incorrect distribution of the noun (n), verb (v), and
modifier (m) instances within them. Must-link con-
straints clearly outperform the Mixed sets and ones
composed only of cannot-link constraints. Here, how-
ever, the Cannot set also significantly outperforms
the baseline and performs as well as or better than the
other alternatives when using very small numbers of
constraints.

In general, we observe that when COP-COBWEB cre-
ates too few clusters in the absence of constraints (as
with soybean), cannot-link constraints are of great-
est use because they encourage the creation of more
clusters. In contrast, when COP-COBWEB creates
the right number (mushroom and pos) or too many
clusters, must-link constraints are most useful because
they encourage merging clusters when appropriate as
well as redistributing instances to more accurately
group them. Experiments on additional data sets will
be needed to corroborate these results.

5.3 Runtime Improvements

Table 2 compares the runtime of COP-COBWEB in
the absence of constraints to the runtime when in-
cluding zero, ten, 50, and 100 constraints. Because
constraints restrict how much of the search space-
must be explored, the runtime of COP-COBWEB de-
creases significantly as more constraints are incorpo-
rated. Note that even in the absence of accuracy im-
provements, as with the tictactoe data set, distinct
runtime benefits are observed.

6. Related Work

Although clustering remains a popular area of re-
search, to our knowledge no previous attempt has been
made to incorporate prior knowledge in the form of
instance-level hard constraints into a clustering algo-
rithm. Thompson and Langley (1992) describe three
incremental unsupervised clustering systems that ben-

Table 2. Runtime comparison (in seconds). COP-
COBWEB was implemented in C and run on a Sun SPARC
Ultra 5.

Number of constraints 0 10 50 100

soybean 1.40 1.28 0.83 0.57
mushroom 1.70 1.40 0.84 0.43
tictactoe 1.95 1.31 0.33 0.23
pos 2.97 2.45 1.51 0.98

efit from incorporating background knowledge by us-
ing it as a starting point in their search. The systems
are presented with an initial concept hierarchy which
they are free to later modify. This “priming” knowl-
edge therefore serves as a soft constraint on clustering,
in contrast to our hard constraints. Although our con-
clusions about the usefulness of background knowledge
are the same, our results are currently not directly
comparable: we employ a different evaluation method
and different data sets.

More recently, Talavera and Béjar (1999) incorpo-
rated declarative knowledge into ISAAC, an interac-
tive agglomerative clustering algorithm. ISAAC builds
a complete hierarchy on the instances, and then the
user manually selects which level of the hierarchy to
use as a partition. In contrast to our instance-level
constraints, ISAAC’s declarative knowledge takes the
form of rules, or constraints, that operate at the fea-
ture level (e.g., all instances with attribute Ai hav-
ing value Vij are in the same class Ck). In addition,
ISAAC has no mechanism for representing a cannot-
link constraint. Furthermore, it is difficult to charac-
terize ISAAC’s constraints as uniformly hard or soft.
In particular, ISAAC is free to choose which level of
the hierarchy should incorporate the constraint. As a
result, whether or not an individual constraint is ob-
served in the final partition depends, in part, on the
level selected by the user to employ as that final par-
tition. Like the work presented here, Talavera and
Béjar (1999) make use of the mushroom data set in
their experiments, but use a different subset and dif-
ferent number (885) of instances as well as a major-
ity vote evaluation metric. While they demonstrate
an improvement from 87.3% to 95.0% with the use of
three manually selected rules, it is not clear how much
of that increase is due to the rules themselves: their
figures reflect overall accuracy rather than accuracy
on the subset of instances not directly affected by the
rules.

Prior knowledge in the form of constraints has also
been used successfully with other machine learning al-
gorithms. Lampinen and Selonen (1997) experimented
with supplying constraints to a multi-layer percep-
tron network to reduce prediction error, and Janikow
(1996) used domain-specific constraints to improve the
efficiency of a genetic programming system. De Raedt
et al. (1991) used “integrity constraints” to impose
restrictions on a knowledge base inferred by their in-
teractive concept-learner Clint.

7. Conclusions and Future Work

We regard this work as an exploratory study of the use
of instance-level hard constraints to improve the per-
formance of clustering algorithms. There are a num-
ber of obvious areas for future work. First, our results
are currently based on the incorporation of instance-
level hard constraints into one clustering algorithm.
We believe, however, that any non-hierarchical cluster-
ing algorithm can be modified to use this information.
Nevertheless, our restriction to partitioning algorithms
makes the specific approach presented here inadequate
for clustering tasks where the goal is to preserve and
identify any inherent subclass structure in the prob-
lem. If, for example, a class is disjunctive in that it
contains two or more disjoint, possibly widely sepa-
rated subsets of instances, then a must-link constraint
between two instances (one in each cluster) forces a
merge of the two subclasses. By losing the distinctive
substructures of the two subsets, it is possible that
the placement of subsequent instances into the correct
cluster will be more difficult because the merged clus-
ter will appear relatively structure free. We speculate
that this is why constraints were of little benefit to
the tictactoe data set. Further research is needed to
investigate this issue as well as to determine how our
instance-level constraints should be operationalized for
hierarchical clustering algorithms.

In addition, we have investigated just two types of
clustering constraints. We believe that many addi-
tional types of constraints for clustering could be stud-
ied in conjunction with a variety of clustering frame-
works. Furthermore, all of our results are based on
experiments with four data sets: experiments on ad-
ditional, larger data sets are needed to corroborate
and better analyze the observed trends. Speed im-
provements to COP-COBWEB’s basic partitioning al-
gorithm are needed before large-scale data sets can
be handled, however. Nevertheless, our initial re-
sults clearly demonstrate that constraints can boost
the performance of a learning system: for three out of
four data sets, statistically significant improvements

in clustering accuracy appear after only five-20 con-
straints have been employed. For domains where con-
straints are not readily available, we propose to inves-
tigate a variety of methods for automatically gener-
ating constraints, including “mining” constraints from
the data sets themselves, learning them from back-
ground knowledge, or interactively and efficiently so-
liciting them from a user.

Acknowledgements

This work was supported in part by a National Science
Foundation Graduate fellowship and by NSF Grant
IRI-9624639. We would especially like to thank West-
ley Weimer for advice and suggestions on the work
as it progressed. We would also like to thank Peter
Cheeseman, Doug Fisher, and John Stutz for email
discussions, and David Skalak, Westley Weimer, and
the anonymous reviewers for insightful comments on
earlier drafts of the paper.

References

Bairoch, A., & Boeckman, B. (1992). The SWISS-
PROT protein sequence data bank. Nucleic Acids
Research, 20, 2019–2022.

Beck, J. C., & Fox, M. S. (1998). A generic framework
for constraint-directed search and scheduling. AI
Magazine, 19, 101–130.

Blake, C. L., & Merz, C. J. (1998). UCI
repository of machine learning databases.
http://www.ics.uci.edu/∼mlearn/MLRepository.html.

Cardie, C., & Wagstaff, K. (1999). Noun phrase co-
reference as clustering. Proceedings of the Joint SIG-
DAT Conference on Empirical Methods in Natural
Language Processing and Very Large Corpora (pp.
82–89). University of Maryland, MD: Association
for Computational Linguistics.

Cheeseman, P., Kelly, J., Self, M., Stutz, J., Taylor,
W., & Freeman, D. (1988). Autoclass: A Bayesian
classification system. Proceedings of the Fifth Inter-
national Workshop on Machine Learning (pp. 54–
64). Ann Arbor, MI: Morgan Kaufmann.

De Raedt, L., Bruynooghe, M., & Martens, B.
(1991). Integrity constraints and interactive
concept-learning. Proceedings of the Eighth Inter-
national Workshop on Machine Learning (pp. 394–
398). Morgan Kaufmann.

Dempster, A. P., Laird, N. M., & Rubin, D. B. (1977).
Maximum likelihood from incomplete data via the

EM algorithm. Journal of the Royal Statistical So-
ciety, 39, 1–38.

Fisher, D. (1987). Knowledge acquisition via incre-
mental conceptual clustering. Machine Learning, 2,
139–172.

Fisher, D. (1996). Iterative optimization and simplifi-
cation of hierarchical clusterings. Journal of Artifi-
cial Intelligence Research, 4, 147–179.

Fisher, D., Xu, L., & Zard, N. (1992). Ordering effects
in clustering. Proceedings of the Ninth International
Conference on Machine Learning (pp. 163–168). San
Francisco, CA: Morgan Kaufmann.

Gluck, M. A., & Corter, J. E. (1985). Information,
uncertainty, and the utility of categories. Proceed-
ings of the Seventh Annual Conference of the Cog-
nitive Science Society (pp. 283–287). Hillsdale, NJ:
Lawrence Erlbaum.

Gray, R. M. (1984). Vector quantization. IEEE ASSP
Magazine, 1, 4–29.

Janikow, C. (1996). A methodology for processing
problem constraints in genetic programming. Com-
puters and Mathematics with Applications, 32, 97–
113.

Lampinen, J., & Selonen, A. (1997). Using background
knowledge in multilayer perceptron learning. Pro-
ceedings of the Tenth Scandinavian Conference on
Image Analysis (pp. 545–549).

McKusick, K. B., & Langley, P. (1991). Constraints
on tree structure in concept formation. Proceedings
of the Twelfth International Conference on Artifi-
cial Intelligence (pp. 810–816). Sydney, Australia:
Morgan Kaufmann.

Talavera, L., & Béjar, J. (1999). Integrating declara-
tive knowledge in hierarchical clustering tasks. Pro-
ceedings of the International Symposium on Intelli-
gent Data Analysis (pp. 211–222). Amsterdam, The
Netherlands: Springer-Verlag.

Thompson, K., & Langley, P. (1992). Case studies in
the use of background knowledge: incremental con-
cept formation. Proceedings of the AAAI-92 Work-
shop on Constraining Learning with Prior Knowl-
edge (pp. 60–68). San Mateo, CA: The AAAI Press.

